Page 542 - Python Data Science Handbook
P. 542

key specification, 149-152         N
                  relational algebra and, 146        naive Bayes classification, 382-390
                  US state population data example, 154-158  advantages/disadvantages, 389
               min() function, 59                      Bayesian classification and, 383
               Miniconda, xiv                          Gaussian, 383-386
               missing data, 120-124                   multinomial, 386-389
                  feature engineering and, 381         text classification example, 386-389
                  handling, 119-120                  NaN value, 104, 116, 122
                  NaN and None, 123                  navigation shortcuts, 8
                  operating on null values in Pandas, 124-127  neural networks, 513
               Möbius strip, 296-298                 noise filter, PCA as, 440-442
               model (defined), 334                  None object, 121, 123
               model parameters (defined), 334       nonlinear embeddings, MDS and, 452
               model selection                       notnull() method, 124
                  bias–variance trade-off, 364-366   np.argsort() function, 86
                  validation curves in Scikit-Learn, 366-370  np.concatenate() function, 48, 143
               model validation, 359-375             np.sort() function, 86
                  bias–variance trade-off, 364-366   null values, 124-127
                  cross-validation, 361-370            detecting, 124
                  grid search example, 373             dropping, 125
                  holdout sets, 360                    filling, 126
                  learning curves, 370-373           NumPy, 33
                  naive approach to, 359               aggregations, 58-63
                  validation curves, 366-370           array attributes, 42
               modules, IPython, 6-7                   array basics, 42
               Mollweide projection, 302               array indexing: accessing single elements, 43
               multi-indexing (see hierarchical indexing)  array slicing: accessing subarrays, 44
               multidimensional scaling (MDS), 450-452  Boolean masks, 70-78
                  basics, 447-450                      broadcasting, 63-69
                  locally linear embedding and, 453-455  comparison operators as ufuncs, 71-73
                  nonlinear embeddings, 452            computation on arrays, 50-58
               MultiIndex type, 129-131                data types in Python, 34
                  creation methods, 131-134            datetime64 dtype, 189
                  data aggregations on, 140            documentation, 34
                  explicit constructors for, 132       fancy indexing, 78-85
                  extra dimension of data with, 130    keywords and/or vs. operators &/|, 77
                  for columns, 133                     sorting arrays, 85-92
                  index setting/resetting, 139         standard data types, 41
                  indexing and slicing, 134-137        structured arrays, 92-96
                  keys option, 144                     universal functions, 50-58
                  level names, 133
                  multiply indexed DataFrames, 136   O
                  multiply indexed Series, 134
                  rearranging, 137-140               object-oriented interface, 223
                  sorted/unsorted indices with, 137  offsets, time series, 196
                  stacking/unstacking indices, 138   on keyword, 149
               multinomial naive Bayes classification, 386-389  one-hot encoding, 376
                                                     one-to-one joins, 147
                                                     optical character recognition
                                                       digit classification, 357-358


               524  |  Index
   537   538   539   540   541   542   543   544   545   546   547