Page 13 - Modul A+Matematik Tamb Tg 4_Pan Asia Publications
P. 13

J     awapan










              Bab 1                                    (ii)  a + b + c  =   a   +   b   + 1    5.  (a)  (i)   CQ   =   x
                                                              c     c   c                      3   4
            Kertas 2 / Paper 2                                    =  –1   +  h + k   + 1     QC =   3x
                                                                    hk   –hk                       4
              1.  (a)  (i)  n(2) = 1 – 2                            –1 – h – k + hk          NQ = 3 – QC
                           = –1                                   =      hk
                                2                                      1 + h + k                = 3 –   3x
                    (ii)  m(k + 2)  =  n(2)                       = 1 –    hk                      4
                                3
                                2                       1  1   h + k  b  – a                      12 – 3x
                        k + 2 + 3 =  (–1)           (b)   k   +   =   hk   =   ×              =   4
                                3
                                                           h
                                                                     a
                                                                         c
                      ©PAN ASIA PUBLICATIONS
                                  17                                b                         AB  4
                             k  = –   3                          = –  c                       5   =  3
                    (iii)  nm(x) = 1 – (x + 3)          1  1   1   = –  a                         20
                                                        k
                                                           h
                            = 1 – x – 3                    =  hk  c                      AB =   3
                                                               a
                                                           b
                                                                                                     2
                                                                                                2
                            = –2 – x                   x  +  x –   = 0                       BC   = AB  + AC  2
                                                        2
                                                                                                   20
                 (b)                                     2  c  c                             BC   =    2  + 5 2
                                                                                                2
                              y                        cx  + bx – a = 0                             3
                                                         2
                                                 2.  (a)  2x  + px – 2x + 8 = 0                  =  625
                            1                          ( p – 2)  – 4(2)(8) > 0                     9
                                                            2
                                                        2
                                           x           p  – 4p + 4 – 64 > 0                  BC =   25
                                                        2
                      –2  –1  0  1  2  3               p  – 4p – 60 > 0                           3
                           –1                          ( p + 6)( p – 10) > 0                 BN = BC – NC
                           –2                          \   Julat nilai p / The range of      BN =   25  – 3
                                                          values of p                             3
                           –3                          p < –6, p > 10                           =  16
                                                           β
                           –4                       (b)   α  +   =  –k                            3
                                                       2   4   2                              PN  =  4 – x
                           –5                             αβ  2                               BN    4
                                                          4   =   2                               4 – x 16  4
                           –6                           α + β = –k                           PN =   4     =  (4 – x)
                                                                                                           3
                                                                                                       3
                                                          αβ = 4                             PQ = NQ + PN
                    0  y  –5                                –( p – 2)
                                                          –k =   2                              =  12 – 3x  +   4  (4 – x)
              2.  (a)  Katakan / Let  8x – 5 = y         –2k = –p + 2                               4     3
                        y + 5                                                                     36 – 9x + 16(4 – x)
                    x =                                    p = 2 + 2k                           =
                         8                                                                              12
                           x + 5                 3.  (a)  f(x) = –(x – h)  + 2k
                                                                 2
                    f  (x) =                                                                      100 – 25x
                     –1
                            8                          –2 = –h  + 2k … 1                        =    12
                                                             2
                 (b)  gf(x) = 24x + 15                 2k = –1                                    25
                    g[8x – 5] = 24x + 15               k = –  1                                 =  12  (4 – x)
                                                           2
                    g(  y) = 24  y + 5   + 15               1                                         25x
                                                             
                                                        2
                             8                         h  = 2  –    + 2                   (ii)  Luas / Area =   12  (4 – x)
                    g( y) = 3(y + 5) + 15              h  = 1  2
                                                        2
                                                                                                      2
                    g( y) = 3y + 30                    h = ±1                                =  25 (4x – x )
                    \  g(x) = 3x + 30                                                          12
                                                                 2
                                                    (b)  f(x) = –(x – 1)  – 1                = –  25 (x  – 4x)
                                                                                                    2
                 (c)  fg(x) = 18x + 1                                                           12
                           8[3x + 30] – 5 = 18x + 1          f(x)                            = –  25 [(x – 2)  – 4]
                                                                                                        2
                      24x + 240 – 5 – 18x – 1 = 0                                               12
                               6x + 234 = 0                  0  1       x                    = –  25 (x – 2)  +  25
                                                                                                       2
                                    x = –39                 –1   (1, –1)                        12        3
                                                            –2
                                                                                       (b)  Apabila / When x = 2,
              Bab 2                                                                       Luas maksimum / Maximum area
                                                                                          =  25(2)  (4 – 2)
                                                                2
            Kertas 2 / Paper 2                      (c)  f(x) = (x – 1)  + 1                25 12
                                                                 2
                                                                     2
                                                 4.  (a)  D = 6 + 3x – x  – (x  – 5x + 2)  =   3   unit 2
              1.  (a)  (i)  h + k =   b                D = 6 + 3x – 2x  + 5x – 2
                                                                  2
                              a                                   2                  6.  (a)  Luas / Area =
                         hk = –  c                     D = 4 + 8x – 2x                    L = 11.5x + 11.5x + (10 – 2x)x
                              a                     (b)  D = –2(x  – 4x) + 4                = 23x + 10x – 2x 2
                                                              2
                             c
                          c   =   ×   a                D = –2[(x – 2)  – 4] + 4             = 33x – 2x 2
                                                                 2
                         b   a   b                     D = –2(x – 2) + 8 + 4              33x – 2x   45
                                                                 2
                                                                                                2
                                 1                     D = –2(x – 2) + 12                   2
                                                                 2
                           = –hk h + k                                               (b)  2x  – 33x + 45  0
                                                       Panjang maksimum = 12 unit         (2x – 3)(x – 15)  0
                             –hk                       apabila x = 2                      1.5  x  15
                           =
                             h + k                     Maximum length = 12 units when x = 2  Minimum x = 1.5 m
                                                              188
       12_Modul A+ MateTam Tg4_Jawapan K2_Final.indd   188                                                        3/9/20   6:41 PM
   8   9   10   11   12   13   14   15