Page 8 - Modul A+1 MM Tingkatan 4
P. 8

7.  Bentukkan persamaan kuadratik daripada maklumat yang diberikan.
                     Form a quadratic equation from the given information.  TP 3
                       Contoh/Example                  (a)                             (b)
                                                                     A  (3x + 2) cm B          A  (x + 7) cm  B          BAB 1
                                                               (x + 5) cm                                  (x + 2) cm
                           D          C
                                       (2x – 3) cm                   C                                D  x cm C
                                                          Luas segi tiga ABC = 85 cm 2     Luas trapezium ABCD
                           A  (x + 6) cm  B                                     2                 2
                     Luas segi empat tepat ABCD           Area of triangle ABC = 85 cm       = 162 cm               2
                                                                                          Area of trapezium ABCD = 162 cm
                                                           1
                     = 50 cm 2                            — × (x + 5) × (3x + 2) = 85
                                                           2
                                                                                           1
                     Area of rectangle ABCD = 50 cm 2       3x  + 2x + 15x + 10 = 170     — × 3(x + 7) + x4 × (x + 2) = 162
                                                                                           2
                                                              2
                           (x + 6)(2x – 3) = 50                3x  + 17x – 160 = 0                  (2x + 7)(x + 2) = 324
                                                                 2
                              4 ©PAN ASIA PUBLICATIONS
                       2x  – 3x + 12x – 18 = 50                                                  2x  + 4x + 7x + 14 = 324
                         2
                                                                                                   2
                            2x  + 9x – 68 = 0                                                      2x  + 11x – 310 = 0
                              2
                                                                                                     2
                  8.  (a)  Lengkapkan rajah berikut.
                        Complete the following diagram.  TP 3
                          Contoh/Example                                  = 1  – 1 – 2
                                                                            2
                                                                          = 1 – 1 – 2
                                                                          = –2
                              x = 1
                                                                               2
                                               Nilai bagi/Value of        = (–1)  – (–1) – 2
                         (i)   x = –1             x  – x – 2              = 1 + 1 – 2
                                                   2
                                                                          = 0
                         (ii)   x = 2
                                                                            2
                                                                          = 2  – 2 – 2
                                                                          = 4 – 2 – 2
                                                                          = 0

                     (b)  Tandakan ✓ bagi nilai-nilai x yang merupakan punca persamaan kuadratik x  – x – 2 = 0.
                                                                                     2
                        Mark ✓ for the values of x that are the roots of the quadratic equation x  – x – 2 = 0.
                                                                            2
                        x = 1                           x = –1   ✓                     x = 2   ✓
                  9.  Cari punca-punca bagi persamaan kuadratik yang berikut.
                     Find the roots of the following quadratic equations.   TP 3

                       Contoh/Example                  (a)  x(2x + 3) = 0              (b)  (x – 1)(x – 4) = 0
                                                          x = 0 atau/or 2x + 3 = 0        x – 1 = 0 atau/or x – 4 = 0
                     (x – 7)(3x + 1) = 0                                  3               x = 1 atau/or x = 4
                     x – 7 = 0 atau/or 3x + 1 = 0         x = 0 atau/or x = – —
                                                                          2
                                     1
                     x = 7 atau/or x = – —
                                     3

                 10.  Selesaikan./Solve.  TP 3
                       Contoh/Example                                  (a)  (4f – 1)(3f + 2) = 0
                                                                          4f – 1 = 0  atau/or  3f + 2 = 0
                     (4k + 5)(2k – 3) = 0                                    4f  = 1  atau/or  3f = –2
                                                                                  1
                     4k + 5 = 0   atau/or  2k – 3 = 0                         f  = —  atau/or   f = – —
                                                                                                    2
                        4k = –5   atau/or  2k = 3                                 4                 3
                                               3
                              5
                         k = – —  atau/or   k = —
                                               2
                      (b)  (5 – 3p)(1 + 5p) = 0                        (c)  (3 + 2m)(2 + 7m) = 0
                          5 – 3p = 0  atau/or  1 + 5p = 0                   3 + 2m = 0   atau/or  2 + 7m = 0
                             3p = 5  atau/or  5p = –1                        2m = –3   atau/or   7m = –2
                                                    1
                                 5
                                                                                                        2
                                                                                    3
                              p = —  atau/or   p = – —                        m  = – —  atau/or   m = – —
                                 3                  5                               2                   7


                                                                   5




         01_Modul A+ MM Tg4.indd   5                                                                              12/10/2021   3:31 PM
   3   4   5   6   7   8   9   10   11   12   13