Page 9 - Modul A+1 MM Tingkatan 4
P. 9
11. Selesaikan dengan kaedah pemfaktoran.
Solve by factorisation method. TP 3
BAB 1 Contoh/Example (a) x – 4x + 3 = 0
2
(x – 1)(x – 3) = 0
2x – 5x – 12 = 0 x – 1 = 0 atau/or x – 3 = 0
2
(2x + 3)(x – 4) = 0 x = 1 atau/or x = 3
2x + 3 = 0 atau/or x – 4 = 0
3
x = – — atau/or x = 4
2
(b) 2k + 7k + 3 = 0 (c) 3p – 2p = 0
2
2
(2k + 1)(k + 3) = 0 p(3p – 2) = 0
©PAN ASIA PUBLICATIONS
2k + 1 = 0 atau/or k + 3 = 0 p = 0 atau/or 3p – 2 = 0
1
2
k = – — atau/or k = –3 p = 0 atau/or p = —
2 3
12. Cari punca-punca bagi persamaan kuadratik yang berikut.
Find the roots of the following quadratic equations. TP 3
Contoh/Example (a) 2x(2x + 1) = 2x + 1
4x + 2x = 2x + 1
2
5x(x – 3) = 2(x – 7) 4x – 1 = 0
2
5x – 15x = 2x – 14 (2x + 1)(2x – 1) = 0
2
5x – 17x + 14 = 0 2x + 1 = 0 atau/or 2x – 1 = 0
2
(5x – 7)(x – 2) = 0 x = – — atau/or x = —
1
1
5x – 7 = 0 atau/or x – 2 = 0 2 2
7
x = — atau/or x = 2
5
(b) (7 – 2f) = 9 (c) (r + 3)(r – 3) = 7
2
49 – 28f + 4f = 9 r – 9 = 7
2
2
4f – 28f + 40 = 0 r – 16 = 0
2
2
f – 7f + 10 = 0 (r + 4)(r – 4) = 0
2
(f – 2)(f – 5) = 0 r + 4 = 0 atau/or r – 4 = 0
f – 2 = 0 atau/or f – 5 = 0 r = –4 atau/or r = 4
f = 2 atau/or f = 5
13. Lakar graf bagi setiap fungsi kuadratik berikut.
Sketch the graph for each of the following quadratic functions. TP 3
Contoh/Example (a) y = –3x 2
y
y = 2x 2 y
x
O
x
O
1
(b) y = 4x + 3 (c) y = – —x – 2
2
2
y 2 y
x
O
–2
3 x
O
6
01_Modul A+ MM Tg4.indd 6 12/10/2021 3:31 PM

