Page 8 - 1202 Question Bank Physics Form 5
P. 8

1.3   Forces in Equilibrium
                                                               1.4   Elasticity
               1.   Forces are in equilibrium when the resultant force is
                 equal to zero.                                  1.  Hooke’s law states that  the  extension of spring is
                                                                  proportional to the applied force.
               2.   Methods of solving numerical  problems for three
                 forces in equilibrium.                           (a)  F ∝ x
                 (a)  By resolution of forces                         F = kx
                                                                      where k = the force constant of the spring
                                                                      Gradient of graph = k
                                  F sin α
                 F     F   F sin β  1     Vertically
                  2     1   2
                β     α                   F sin α + F sin β = F
                                          Vertically  2   3
                                           1
                       =  ©PAN ASIA PUBLICATIONS
                                          Horizontally
                           F cos β  F cos α  F  sin a + F  sin b = F         4
                            2      1      F cos α = F cos β  3
                                           1
                                                   2
                                           1
                                                   2
                    F            F        Horizontally                       3
                     3            3       F  cos a = F  cos b
                                           1       2                         Force/ N  2
                 (b)  By drawing a scaled triangle of force                  1
                                    F                                        0
                                     2                                           0.1 0.2 0.3 0.4
                                    α                                              Extension/ m
                                           F
                                            3                     (b)  Gradient of X > Gradient of Y
                                                                      Steeper slope  ˜ Greater value of  k  ˜ Stiffer
                                    F
                                     1
                                                                      spring.
                                       β

                                                                               F/ N
                     (i)  Use suitable scale.
                     (ii)  Measure the corresponding sides.
                     (iii)  Calculate the required force using the scale
                        used.                                                         X
                 (c)  If the  triangle  is right-angled,  use simple
                                                                                           Y
                     trigonometry.
                                               Example:
                        F F  F F              Example:
                         2  2  1  1  F F  β β                                                     x/ cm
                                               F  = F  sin α
                                      1  1    F  = F  sin α
                       β β   α α               1  1  3  3
                                              F  = F  cos α
                                               F  = F  cos α
                                               2  2  3  3
                                                                 2.  Area under force-extension graph:
                                            F F
                                             3  3
                           F F
                            3  3
                                     F F                             Force
                                      2  2  α α
                                       β β
                                                                     F
               3.  Alternative method:                                                   1
                                                                                    Area = – Fx
                                                                                         2
                 (a)  Using sine rule  (b)  Using cosine rule
                                                                                        = Elastic potential
                                                                                           energy
                                    sin a  sin b  sin c
                                                             2
                                                         2
                                                                2
                       F    a         –––– =    –––– = ––––  F = F + F – 2F F cos θ
                                             F
                        2               F         F     2  F  3  1  2  1  2
                                      1     2    3
                                                                     O          x
                       c                     θ                                              Extension
                              F                     F
                               3                     3
                                                                  Elastic potential energy = Area under the graph
                       F    b                F
                        1                     1
                                                                                       1
                                                                                  E  =   Fx
                                                                                   P   2
                  sin a  sin b  sin c  F  = F  + F  – 2F F  cos q                      1
                                                2
                                        2
                                            2
                              =        3   1   2    1  2                             =  (kx)(x)
                   F      F     F                                                      2
                    1      2     3
                                                                                       1
                                                                                     =  kx 2
                                                                                       2
             2
       Chp 1_1202 QB Physics F5.indd   2                                                                    10/01/2022   12:33 PM
   3   4   5   6   7   8   9   10   11   12   13