Page 73 - Past Year
P. 73
71 | P a g e
CHAPTER 8: DIFFERENTATION
dy
1. Find when x for each of the following:
0
dx
2 e 2x (2x 1)
3
(i) y ln x x 1 (ii) y .
x 1
dy
2. Given ln y e xy , find
dx
2
d x e x
x
3. If y x e , show that 0
dy 2 1 e x 3
dy
4. Find the value of at x 1 if
dx
1 2 2 1 3x
(a) y 2x 3x (b) y
x x 2 x 3
2
2
4
5. Given that x 2xy 2y . Solve for x and y if dy 0 .
dx
2
2
3
0
6. Let y x y 2x for x .
(a) If y =1, find the value of x.
dy dy
(b) Find . Hence, evaluate when y = 1.
dx dx
B
7. Given y Ax 2 , where A and B are constants and x .
0
x
dy d y d y dy
2
2
0
(a) Find and . Hence, show that x 3 x 2 3B .
dx dx 2 dx 2 dx
dy
(b) Find the values of A and B if y = 3 and 3 when x = 1.
dx

