Page 73 - Past Year
P. 73

71 | P a g e




                                            CHAPTER 8: DIFFERENTATION


                            dy
               1.      Find     when  x   for each of the following:
                                         0
                            dx
                                          2                                e 2x (2x  1)
                                                                                    3
                       (i)    y   ln x   x  1                  (ii)    y             .
                                                                                  x  1


                                             dy
               2.      Given ln y e  xy , find
                                             dx

                                                  2
                                                d x      e x
                                  x
                               
               3.      If   y   x e , show  that               0
                                                dy 2   1 e x  3
                                                        
                                        dy
               4.      Find the value of    at  x  1 if
                                        dx

                                                                                
                                       1   2   2                             1 3x
                       (a)    y   2x     3x                   (b)     y 
                                       x                                   x   2  x   3


                                               2
                                   2
                                                  4
               5.      Given that  x  2xy  2y   .  Solve for  x  and  y  if   dy    0 .
                                                                           dx

                            2
                                 2
                                     3
                                                   0
               6.      Let  y  x   y  2x for  x  .
                       (a)     If y =1, find the value of x.
                                   dy                   dy
                       (b)     Find   . Hence, evaluate    when y = 1.
                                   dx                   dx


                                       B
               7.      Given  y   Ax   2  , where A and B are constants and  x  .
                                                                               0
                                        x
                                   dy       d y                      d y      dy
                                             2
                                                                       2
                                                                                        0
                       (a)     Find    and      . Hence, show that  x 3    x 2   3B  .
                                   dx       dx 2                     dx 2     dx
                                                                    dy
                       (b)    Find the values of A and B if y = 3 and    3 when x = 1.
                                                                    dx
   68   69   70   71   72   73   74   75   76   77   78