Page 76 - Past Year
P. 76

74 | P a g e

                              ' f
               24.     Find    x  for    3f x   x   2  2 by using the first principle. Hence, or otherwise, find the
                       value of    x  at  x  1.
                                 ' f
               25.     Given  y   Ae  x  ln x , where A is a constant.
                                             2
                                            d y
                                                    2
                                                                      0
                       (a)        Show that  x 2    yx   Ae  x  2x    1  .
                                            dx 2
                                                    dy
                       (b)        Find the value of A if    1 when  x  1. Give your answer in exact value.
                                                    dx
               26.     Use suitable rules of differentiation to find the derivative of the following functions. Give
                       your answer in the simplest form.
                       (a)              x   x e
                                         3 7x
                                 f
                                             
                       (b)              x   h  x ln x e ln x
                                                           dy                        2
               27.     Apply implicit differentiation to find    for the equation x y   xy   2. Hence, solve for
                                                           dx
                               dy
                       x when       0. Give your answer in exact value.
                               dx
                                                                                                       2
                                                                                2
                                                                     3
               28.     Determine the values of A, B and C for  y   Ax  B x    1  Cx , if    dy    2and   d y   1
                                                                                          dx          dx 2
                       at the point (2, 1).


                                                  dy                                     dy
                                2
                                       2
               29.     If  4y  3x  5xy  , find     in terms of    and   . Hence evaluate   when    = 0.
                                          8
                                                  dx                                     dx
                                           x 3       dy    Ax 2  x B  
               30.     (a)    Given  y          and                 . Find the values of    and   .
                                          x    1  2  dx  x    1  3

                                                    1      dy
                       (b)    Given  y   4x 3x   3   2 , find    in the simplest form.
                                                    2
                                                           dx

                                                            2
                                                                                                     2
               31.     (a)     Given  y   4 5x e     3x , find  d y   in the simplest form. Hence evaluate   d y   when
                                                           dx 2                                    dx 2
                                  = 0.

                                    dy
                       (b)    Find     in terms of x and y, given that      y ln x  where    > 0 and    > 0.
                                                                      ln 2y
                                    dx
                                                                                    dy
                              Give your answer in the simplest form. Hence evaluate     when    = 1.
                                                                                    dx
   71   72   73   74   75   76   77   78   79   80   81