Page 74 - Past Year
P. 74

72 | P a g e



                              x
                             e   e  x           dy   2
               8.      If  y        , show that        y   2  1.
                                2                 dx 
                                                               2
                                       B                    2  d y    dy
               9.      Given  y   Ax    2ln x, show that  x      x     y  2ln x .
                                       x                      dx 2    dx


               10.     Differentiate the following with respect to  x .
                                  3x  1                                      3
                                                                                 
                       (a)    y                           (b)    y   2x    3 ln 4x    5 .
                                   x  2


                                   dy                                            dy
                                                                                           
                                                            
                                                2
                                           2
               11.     (a)    Find     if  x  3y  2xy  19 0. Hence, evaluate      at 2,3 .
                                   dx                                            dx
                                                                                         3
                       (b)    Given y    Ax B e    x ,  find  the  constants  A   and  B   if  y    and   dy   5   when
                                                                                                dx
                              x  0 .


                                               2
               12.     Find  '( )f x  for  ( ) 3f x   x  2x  1 by using the first principle.


                                   dy
                                                       
               13.     (a)    Find     for  e 4x (x y  2  1) 1.
                                   dx
                                         ln(x  1)            dy    1   1    ln(x  1) 
                           (b)       Given   y    , show that                     
                                             x                dx     x   x  1  2x   


               14.     Differentiate the following with respect to x :

                                      2       2
                                 x
                       (a)     f ( )     3x    x
                                              3
                                     3x 3
                       (b)       ( )f x       2x    1    x   2   1
                                       x  

                                        2 x 
                       (c)       ( ) ln(f x   x e  2  5x   1 )
   69   70   71   72   73   74   75   76   77   78   79