Page 75 - Past Year
P. 75

73 | P a g e

                            dy
                                                  y
               15.     Find     for  2x y y  2  2    2e   by using implicit differentiation.
                            dx

               16.     (a)    Find the slope of a curve  y   5x   2  3 at the point  x   by using the first principle
                                                                                 2

                              of differentiation.
                                                           2
                                                              2
                                                          x d y      dy
                      (b)     If  y   Ax   2  Bx , show that      x    y   0 .
                                                           2 dx 2    dx


               17.     Differentiate the following with respect to   . Give your answer in the simplest form.
                                      xe 3x
                                                                                                 3
                                 x
                      (a)      f ( )                             (b)       ( )f x   (3x  2)(x  4)
                                     x  3
               18.     Find  '(2)f   for  ( ) 2f x   x   2  x  by using the first principle.

               19.    Differentiate the following with respect to x. Give your answer in the simplest form.

                                                    4
                        (a)    f  ( )    x  9 x    2
                                 x
                                     2x    4  3
                                 x
                        (b)    f  ( ) 
                                       x  3
                                                
                                                3
                                   
                                 x
                        (c)    f  ( ) ln 2x      3 e 3x
                                 dy
                                         3
                                               2
                                                  
                                                      4y
                                                          2
               20.     (a)   Find    for  y  2x y xe   by using implicit differentiation.
                                 dx
                                           dy
                                                     0
                           Hence, evaluate     at  y  .
                                           dx
                                                                2
                      (b)   Prove that if  y    Ax B e     2x  then  d y   4 dy   4y  .
                                                                                0
                                                              dx 2    dx
                            dy
                                                      
                                            2
               21.     Find    for  y  3x y  7xy  1 0 by using implicit differentiation. Hence, determine all
                                          2
                                    2
                            dx
                                 dy
                       values of   when  y  1.
                                 dx
               22.     Differentiate the following with respect to x. Give your answer in the simplest form.
                       (a)  y    x   2   3 e           (b)  y   ln     x  1     3
                                        5x
                                                                      5x    2  2
                                                 2
                                      f
                              ' f
                                                    x
               23.     Find    x  for   x   2x   1 by using the first principle. Hence, find    2f  '  .
   70   71   72   73   74   75   76   77   78   79   80