Page 7 - Elementary Algebra Exercise Book I
P. 7

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers


               1  REAL NUMBERS




                                1           1                           1
               1.1 Compute      2  +        3       + ··· +           2001           .
                                                                1
                                                 1
                                           1
                                                                       1
                              1+  1   (1 + )(1 + )         (1 + )(1 + ) ···(1 +   1  )
                                  2        2     3              2      3         2001
               Solution: This quantity is equal to
                  1           1                          1                             1
                  2  1 +      3  1 1  +···+             2001 1 1        +                 1
                     1
                                                                    1
                                                                                                  1
                                         +···+
                                            (1 + )(1 + ) ··· (1 +
                1+  12 2  1 +  1  1  3 3  1 3  1 +···+  1 2  1  1 3  2001  2001 1  +  1 2  1  1 3  1  1  2001 1
                       (1 + )(1 + )
                                                                                                    )
                        +
                                                                       ) (1 + )(1 + ) ··· (1 +
                                                           2001
                                                                           +
                            2
                                                           1
                    2
                                                                                                       )
                                                                          ) (1 + )(1 + ) ··· (1 +
                                1
                   1+ 1   (1 + )(1 + )         (1 + )(1 + ) ··· (1 +  2001 ) (1 + )(1 + ) ··· (1 +  2001 )
                                       1
                                                            1
                                                                                                     1
                                                                                         1
                                                                                  1
                                                                       1
                                                     1
                                                    2 )(1 + )
                            1 (1 + )(1 + )
                                                (1 +
                                                               1 ··· (1 +
                   1+
                       2
                                                                                         3
                                                           3
                                       3
                                                                                  2
                               2
            −          2       1 1 2   3   =1 −      2      3    1 1  2001        2      3          2001
                           1
                    1
               (1 + )(1 + ) ···(1 +    1  )   =1 −     1      1          1  )
                                                 (1 + )(1 + ) ···(1 +
               −
                    2
                           3
                                                              3
                                                       2
                                                          1
                                     2001 1
                       1
                              1
                                                                        2001 1
                                                                 1
               −  (1 + )(1 + ) ···(1 +  2001 )  =1 −  (1 + )(1 + ) ···(1 +  2001 )
                                                                               )
                                            )
                                                          1
                                          1
                                                                 1
                       1
                              1
                                                                             1
                                                  1 (1 + )(1 + ) ···(1 +
                                                        1000
                       2 )(1 +
                             1 3 ) ···(1 +
                  (1 +
            =1 −   3   2 4    3  1 2001 2002  2001   1 =  2 2  1000  3 3   2001
                                         =1 −
                                                           1000
                                1
                                                     1
                                                1001
                                                        =
               =1 −  × × ··· ×              =1 −        1001     .
               =1  2 −  3  3  4  2000 2001 2002 =1 −  1001  =  1001
                                    2001
                      3
                        × × ··· × 2001 2002
                           4
                          3
                      2 × × ··· ×   2000 2001      1001    1001
                      2    3        2000 2001
                                                                                                   1
               1.2 If  p, q  are prime numbers and satisfy  5p +3q = 19. Compute the value of  √     √ .
                                                                                                 q −   p
               Solution: The equation 5p +3q = 19 implies that one of  p, q  is even. Since  p, q  are prime
               numbers  and the only even prime number is 2, we have two possibilities: if  q =2, then
                p = 13/5, not a prime number, so this case is impossible; if  p =2, then  q =3, thus
                    1           1       √     √
                √    √ = √        √ =     3+    2.
                  q −  p      3 −   2
               1.3 Solve  |x| + x + y = 10 and  x + |y|− y = 12 for  x, y .
               Solution: It is easy to figure out that x ≤ 0 or  y ≥ 0 are impossible. Thus x> 0 and  y< 0
               which lead to  x = 32/5,y = −14/5.
                                 √
                                    1001
                  3
                                                                  3
              (4a − 1004a  =   1+ 1001 , compute the value of  (4a − 1004a − 1001)  1001 .
               1.4 Given  − 1001)
                                  2
                               √                √
                                  1001
                3
                                                                                    3
                                                            2
               Solution: a − 1001) ⇒ 2a − 1=
             (4a − 1004   =  1+ 1001      √       1001 ⇒ 4a − 4a − 1000 = 0 ⇒ (4a − 1004a − 1001)    1001  =
                        √
                                                                                                 1001
                                                                                3
                                                       2
                      1+ 1001
                   =     2  3  ⇒ 2 2a − 1=  1001 ⇒ 4a − 4a − 1000 = 0 ⇒ (4a − 1004a − 1001)          =
                                                                   1001
                                                 2
                                                                                    1001
                                 2
                                                                                        = −1
                       [(4a − 4a − 1000a) + (4a − 4a − 1000) − 1]
                                                                       = (0 − 0 − 1)
                   3
                          2
                                           2
               [(4a − 4a − 1000a) + (4a − 4a − 1000) − 1]     1001  = (0 − 0 − 1) 1001  = −1.
                                                         1               1
                                                    3
                                                                2
                                                                                              2
               1.5 If  a, b, x  are real numbers and  (x +  − a) + |x +    − b| =0. Show  b(b − 3) = a .
                                                         x 3             x
                                                                         a,
                                                                              3
                                                                                                   1
                                                                                          a,
               Proof: Since  a, b, x are real numbers, the equation implies that  b, x +  1 3 = a  and  b, x    + = b  .
                                                                                  x                x
                                                                     1
                                                                             1
                                            1
               Hence,  a = x +   1  =(x + )(x − 1+       1  )= (x + )[(x + ) − 3] = b(b − 3).
                                                2
                                                                                           2
                                                                               2
                            3
                                 x 3        x           x 2         x        x
                                                              √            √
                                                                             3 2
                                                                         +
               1.6 If the real numbers  a, b, c  satisfy  a =2b +  2 and  a, b, ca, b, c c +  1  =0. Evaluate  bc/a .
                                                                            2      4
                                            Download free eBooks at bookboon.com
                                                            7
   2   3   4   5   6   7   8   9   10   11   12