Page 9 - Elementary Algebra Exercise Book I
P. 9

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                                      √
                                                                 2b
                                                    −b 2
                                               b
                          b
               Solution:   a + a −b  =2 2 ⇒ (a + a ) =8 ⇒ a + a        −2b  =6 . Thus
                 b
                      −b 2
                                                             b
                               2b
               (a − a ) = a − 2+ a       −2b  =6 − 2= 4 ⇒ a − a   −b  = ±2 .
                                                                                         b
                                                         b
               The conditions  a> 1,b > 0 imply that  a − a   −b  > 0. As a conclusion,  a − a −b  =2.
               1.11 Find the integer part of A  =  11×70+12×69+13×68+···+20×61  × 100.
                                                   11×69+12×68+13×67+···+20×60
                                                                   =  11×69+12×68+13×68+···+20×60  × 100
                                                                      11×69+12×68+13×67+···+20×60
                                                                        11+12+13+···+20
               Solution: A =  11×69+12×68+13×68+···+20×60  × 100  +  11×69+12×68+13×67+···+20×60  × 100
                      11×69+12×68+13×68+···+20×60
                                                × 100
                   =
                              11×69+12×68+13×67+···+20×60
                      11×69+12×68+13×67+···+20×60              = 100 +         11+12+13+···+20     × 100
                                11+12+13+···+20
               +        + 11+12+13+···+20   × 100    × 100               11×69+12×68+13×67+···+20×60
                          11×69+12×68+13×67+···+20×60
                  11×69+12×68+13×67+···+20×60
                                       11+12+13+···+20
                                 11×69+12×68+13×67+···+20×60 .
               = 100 +  = 100 + 11+12+13+···+20    × 100   × 100
                         11×69+12×68+13×67+···+20×60
                                                                     31      11 + 12 + 13 + ··· + 20
                       31     11 + 12 + 13 + ··· + 20               1   =                            × 100
               Since  1  =                           × 100           69   (11 + 12 + 13 + ··· + 20) × 69
                            11 + 12 + 13 + ··· + 20
                    31  69  (11 + 12 + 13 + ··· + 20) × 69                  11 + 12 + 13 + ··· + 20
                   1   =     11 + 12 + 13 + ··· + 20  × 100      <                                         × 100
                   < 69  (11 + 12 + 13 + ··· + 20) × 69   × 100    11 × 69 + 12 × 68 + 13 × 67 + ··· + 20 × 60
                     11 × 69 + 12 × 68 + 13 × 67 + ··· + 20 × 60      11 + 12 + 13 + ··· + 20          2 .
                           11 + 12 + 13 + ··· + 20
                        11 + 12 + 13 + ··· + 20        2
               <   <                           × 100 = 1   × 100 <                            × 100 = 1
                  11 × 69 + 12 × 68 + 13 × 67          3           (11 + 12 + 13 + ··· + 20) × 60      3
                     (11 + 12 + 13 + ··· + 20) × 60 + ··· + 20 × 60
                     11 + 12 + 13 + ··· + 20           2
               <
                  (11 + 12 + 13 + ··· + 20) × 60 A  is  100 + 1 = 101.
               Therefore the integer part of   × 100 = 1 3
                                                               a + b
               1.12 If  a<b< 0 and  a + b =4ab, evaluate            .
                                        2
                                             2
                                                               a − b
                                                                                         √
                             2
                                 2
               Solution 1:  a + b =4ab ⇒ (a + b) =6ab . Since  a<b< 0,  a + b = − 6ab. Similarly,
                                                    2
                                                                 √
                                        √
               we can obtain  a − b = − 2ab . Hence,    a + b  =  − 6ab  =  √ 3 .
                                                                 √
                                                        a − b   − 2ab
                                                                x+y
               Solution 2: Let  a + b = x ,  a − b = y , then  a + b = x ,b =  x−y . Substitute them into
                                                              =
                                                                  2       2
                                                                          √                    √
                                         2
                     2
                 2
                                               2
               a + b =4ab  to obtain x =3y . Since x, y < 0, then x =       3y, that is a + b =  3(a − b).
               Thus  a + b  =  √ 3 .
                     a − b      
                                                                                               √                   √
               1.13 Given  b, x    =(b  n+1  − a  n+1 ) n+1                          n  x +  n+1  a x  2  +  n  a +  n+1  x a  2  − b
                                             n
                                      n
                         a,
                                                  n ,  compute the  value of  A =
                                                                                         n
                                                                                                                       n n
                                                                                                             n
                                                                                                  n n

    √                    √
 n  n+1    2   n       n+1     2
 n
                            n n
       n n
 A =  x +  a x  +  a +     x a   − b .
                   n


                                n       n  n+1      n       n      n              n   n 2   n       n      n   n 2   n      n               n       n   n  n 2
                                                                                                                                        n
                    a,
               Solution:  b, x =(b n+1  − a n+1  )  n ⇒ x n+1  = b n+1  − a n+1  . Thus A = n  n x 2  n+1  (x  n+1  + a  n+1 )+    n a 2  n+1 (a  n+1  + x  n+1  ) − b = n  x  n+1  + a  n+1 n (  n x 2  n+1  +



                                                                                          n
                                                                                                                  n
                                                                                                 n
                                                                                                                          n
                                                                                                                                                 n
                                                                                                                                          n
                                                                                                        n
                                                                                                    )+
                                                                                  x n+1  (x n+1  + a  n+1    a n+1  (a n+1  + x n+1 ) − b =  x n+1  + a  n+1   (  x n+1  +
                                                                          A =
                                                                         n   n 2  n 2  n     n n          n n 2  n  n  n        n      n n     n n  n  n n 2  n
                                                                                                    n n
                                                                                                                            n
                                                                             n  x   (x   n  x + a  + a )+ n+1 (x a  n+1  (a  n+1  ) − b = ) − b b=  n − a x  n+1 +  n+1  (b x  − a + n+1  +
                                                                                                                                           + a a
                                                                                                             + a + x
                                                                       n A =
                                                                                                                               n+1
                                                                                ) − b = n+1
                                                                                                               n
 n  n 2  n  n   n   n 2   n      n               n       n  n   n 2        n a 2  n+1 n+1     n  n+1 n+1  n  n  n+1  n+1  n+1     n  n n+1   n n+1  n (  n+1 n+1  n
                                             n                                        n                                   n
                                                                           n ) − b =
                                                                    +

 A = n  n x 2 n+1  (x n  n+1  + a n  n+1  )+ n  n a 2  n+1  (a n  n+1  + x n  n+1  ) − b = n  x n  n+1  + a n  n+1 n (  n x 2  n+1    a  n+1  1x  n+1 n + a  n+1  (x  n+1   + a  n+1  ) − b =  b  n+1  − a  n+1  + a  n+1  (b  n+1  − a  n+1  +
   A =  x  n+1  (x  n+1  + a  n+1  )+  a  n+1  (a  n+1  + x  n+1 ) − b =  x  n+1  + a  n+1  (  x  n+1  +  n  n n a 2  n+1 ) − b = b  n+1 n b  n+1  − b = b − b =0     n  n  n  n  n

                                                                                        n
                                                                                                            n
                                                                                                     n
                                                                                               n
                                                                                     1
                                                                                                                       n
                                                                                   n
                                                                        n+1 ) − b =
                                                                                            − b = b − b =0 a
                                                                                    n+1 n+1
 n
                                 n
    n  n 2     n  n  n  n            n       n      n     n      n    a a n+1 ) − b = b x  b n+1 + a n+1  (x n+1  +  n+1 ) − b =  b  n+1  − a n+1  + a n+1  (b  n+1  − a n+1  +


 n  n a 2 n+1  ) − b = n  x n  n+1  + a n  n+1 (x n  n+1  + a n  n+1  ) − b = n  b n  n+1  − a n  n+1  + a n  n+1  (b n  n+1  − a n  n+1  + n  1  n
 n ) − b =
 a n+1  1x n+1 n + a n+1  (x n+1  + a n+1  ) − b =  b n+1  − a n+1  + a  n+1  (b n+1  − a n+1  +a  n+1  ) − b = b  n+1 b  n+1  − b = b − b =0 .
 a n  n+1  ) − b = b 1  n+1 n b  n+1  − b = b − b =0
 a  n+1  ) − b = b  n+1  b  n+1  − b = b − b =0
                                            Download free eBooks at bookboon.com
                                                            9
   4   5   6   7   8   9   10   11   12   13   14