Page 12 - Elementary Algebra Exercise Book I
P. 12

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               Solution: Let  T = t 1 + t 2 + ··· +(2+0+0+8) +(2+0+0+9), and then reverse the
               order of right hand side to obtain  T = (2+0+0+9) +(2+0+0+8) + ··· +2+1.
               Add up these two equalities to obtain

               2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+·· ·+[(2+0+0+8)+2]+[(2+0+0+9)+1] =2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+·· ·+[(2+0+0+8)+2]+[(2+0+0+9)+1] =   =

                   2T = [1+(2+0+0+9)]+[2+(2+0+0+8)]+·· ·+[(2+0+0+8)+2]+[(2+0+0+9)+1]
               12 × 2009 ⇒ T = 12 × 2009/2 = 12054.
            12 × 2009 ⇒ T = 12 × 2009/2 = 1205412 × 2009 ⇒ T = 12 × 2009/2 = 12054
                                                                                                        1
                                                                                                1
               1.22 Let a be a positive integer, b  and c are prime numbers, and they satisfy a = bc, +  1 b  = ,
                                                                                                        c
                                                                                               a
               find the value of a.
                         1    1   1     1    1   1    b − c
               Solution:   +    =    ⇒    =    −   =       . Since  a = bc , we have  b − c =1, thus  c  and
                         a    b    c    a    c   b      bc
               b  are two consecutive prime numbers, which has the only choice  c =2,b =3, thus  a =6.

               1.23    Let  x, y  are two natural numbers and they satisfy  x > y, x + y = 667. Let  p  be
               the least common multiple of  x  and  y , let  d  be the greatest common divisor of  x  and

                y , and  p = 120d . Find the maximum value of  x − y .


               Solution: Let  x = md, y = nd , then  m, n  should be coprime since  d  is the greatest common
               divisor.  x> y  implies  m>n .  p = mnd = 120d ⇒ mn = 120 . In addition,

               (m + n)d = 667 = 23 × 29 = 1 × 667(m + n)d = 667 = 23 × 29 = 1 × 667. Since 23 and 29 are coprime, there are only three

               possibilities: (1) m + n = 23,d = 29; (2) m + n = 29,d = 23; (3) m + n = 667,d =1. Together

               with  mn = 120, we have (1)  m = 15,n =8 ; (2)  m = 24,n =5 ; (3) no solution. Thus
               (m − n) max = 24 − 5 = 19 which leads to (x − y) max = (24 − 5) × 23 = 437.


               1.24 If  x,y,z  satisfy  3x +7y + z =5  (i),  4x + 10y + z = 39  (ii), find the value of
               x + y + z
                         .
                 x +3y

               Solution:  (i) × 3 − (ii) × 2 ⇒ x + y + z = −63.  (ii) − (i) ⇒ x +3y = 34.


                       x + y + z z
                       x + y +        63 63
               Hence,             =      .
                                  = − −
                         x +3y        34 34
                         x +3y
                                √     √                          3    3    1
               1.25 Given  a =   3  4+  3  2+1, find the value of   +   +    .
                                                                 a   a 2   a 3

                                                                                                                             3
                                                                                                                                   2
                          √            √        √     √                      1    √                 3   1      2            a +3a +3a +1 − a    3      a +1    3    3    1    3
                                                                                                                                                    3


                                                                                                                 3
                                                                                                3 2
                           3
                                        3
                                                3
                                                                                      3
                                                                                           1
                                                                                                                a +3a
                                                                                                3a
               Solution:  ( 2 − 1)a =( 2 − 1)( 4+     3  2+1) = 2 − 1= 1 ⇒      = 3 3  2 − 1, thus  + +3a +1  3a +3a +1 2  = +3a +1 − a 3   a +1  =          −1= 1   1+     −
                                                                                                     +
                                                                                                         3
                                                                                                          =
                                                                                    +
                                                                                                                                                        a
                                                                                                                                      3
                                                                             a    a a  2  + a 3  =  a a 2 a 3 a  =  a 3    a 3       a =      a      −1=     1+  a   −   a
                                     2
                                3
                   2
      3  3   1   3a +3a +1     a +3a +3a +1 − a  3     a +1    3        1    3 − 1= 2 − 1= 1 . 1= 2 − 1= 1
       +   +   =             =                     =         −1=    1+
      a a 2  a 3      a 3               a 3             a               a
   1= 2 − 1= 1                                        x                        x 2
               1.26  a  =0 is a real number, and             = a , express   x + x +1  as a function of  a .
                                                                           4
                                                                                2
                                                  2
                                                 x + x +1
                                            Download free eBooks at bookboon.com
                                                            12
   7   8   9   10   11   12   13   14   15   16   17