Page 77 - Elementary Algebra Exercise Book I
P. 77

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions




               2.80    Solve the equation  x + log 3 = log (4 − 5 · 9 ).
                                                     x
                                                                       x
                                                             9
                                                   9
                                                               x
                                                                        x
                                                                                                                       x
                                                                                          x
               Solution: The equation is equivalent to  log 9 + log 3 = log (4 − 5 · 9 ) ⇒ log 3     3x  = log (4 − 5 · 9 ) ⇒ 3 3x  =4 − 5 · 3 2x
                                                                      9
                                                                                9
                                                                                                  9
                                                                                                             9
                                                            9
                             x
 x
 x
                                                               x
 x
 log 9 + log 3 = log (4 − 5 · 9 ) ⇒ log 3 3x  = log (4 − 5 · 9 ) ⇒ 3 3x  =4 − 5 · 3 2x  .  Let  3 = y ,  then  the  equation becomes
 9
                   9
 9
 9
        9

                y +5y − 4 =0 ⇒ y + y +4y − 4 =0 ⇒ (y + 1)(y +4y − 4) = 0 ⇒ y = −1y +5y − 4 =0 ⇒ y + y +4y − 4 =0 ⇒ (y + 1)(y +4y − 4) = 0 ⇒ y = −1  or
                       2
                                                                       2
                                              2
                 3
                    3
                                     3
                                         3
                                                 2
                          2
                                          2
                                                    2
                                                                          2
                            √              √                                                      √
                                                                x
                y = −2(1 +    2) or  y = 2( 2 − 1). Since  y =3 > 0, then  y = −1,y = −2(1 +        2) are
                                         √ √                √ √                    √ √
                                                      x x
               incorrect. Hence,  y = 2( 2 − 1) ⇒ 3 = 2( 2 − 1) ⇒ x = log 2( 2 − 1)y = 2( 2 − 1) ⇒ 3 = 2( 2 − 1) ⇒ x = log 2( 2 − 1), which is the
                                                                                3 3
               only root.
               2.81      Solve the system of equations
                                                       4x 2
                                                              = y,
                                                     1+4x  2
                                                       4y 2
                                                              = z,
                                                     1+4y  2
                                                       4z 2
                                                              = x.
                                                     1+4z  2
               Solution: Obviously  x ≥ 0,y ≥ 0,z ≥ 0. The first equation together with
                                  2
               1+4x = (1 − 2x) +4x ≥ 4x  leads to  y =8       4x 2  2 ≤  4x 2  = x . Similarly, the second and
                      2
                                                           =
                                                                      4x
                                                             1+4x
               the third equations lead to  z ≤ y, x ≤ z . Hence,  x = y = z , then
                  2 2
                                                            22
                4x4x 2 = x ⇒ 4x − 4x + x =0 ⇒ x(2x − 1) =0 ⇒ x =0= x ⇒ 4x − 4x + x =0 ⇒ x(2x − 1) =0 ⇒ x =0  or  x =1/2. Therefore,
                               33
                                     22

               1+4x1+4x 2
               (0, 0, 0), (1/2, 1/2, 1/2) are the solutions.
                                                                                              2
                                                                                                               2
                                                                      3
                                                                             2
                                                                                         3
               2.82     Find all distinct real roots of the equation  (x − 3x + x − 2)(x − x − 4x +7)+6x − 15x + 18 = 0
 2
 3
 (x − 3x + x − 2)(x − x − 4x +7)+6x − 15x + 18 = 0.
 3
                    2
    2
                                                                5
                                                                      9
               Solution: Let  A = x − 2x + x + ,B = x − x + , then the equation becomes
                                              3
                                    3
                                          2
                                                    5
                                                            2
                                              2     2           2     2
                                                               2
                                                    2
               (A − B)(A + B) +6B − 9 =0 ⇒ A − (B − 3) =0 ⇒ (A + B − 3)(A − B + 3) =
                                                       2
                                                                   2
                   (A − B)(A + B) +6B − 9 =0 ⇒ A − (B − 3) =0 ⇒ (A + B − 3)(A − B + 3) =
            0 ⇒ A + B − 3= 0
               0 ⇒ A + B − 3= 0  or  A − B +3 = 0.
               If  A + B − 3= 0, then  x − x − 4x +4 = 0 ⇒ (x − 1)(x − 2)(x + 2) = 0 ⇒ x =1 or
                                               2
                                         3
               x = ±2.
               If  A − B +3 = 0, then  x − 3x + x +1 = 0 ⇒ (x − 1)(x − 2x − 1) = 0 ⇒ x =1 or
                                                                          2
                                         3
                                                2
                        √
               x =1 ±     2.
                                                                                                  √
               As a conclusion, the equation has four distinct real roots:  x =1,x = ±2,x =1 ±      2.
                                                               √      √      √
               2.83     If a, b, c  are real numbers, ac < 0, 2a +      3b +   5c =0, show the quadratic
                                                                           3
                           2
               equation  ax + bx + c =0 has a root within the interval  ( , 1).
                                                                           4
                                            Download free eBooks at bookboon.com
                                                            77
   72   73   74   75   76   77   78   79   80   81   82