Page 83 - Elementary Algebra Exercise Book I
P. 83

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions



               Obviously (iv)(v)(iv) should have the same sign on the right hand side. Hence, the original
                                                                   2 2
                                           2 2
                                                                           2 2
                                                                       2 2
                                               2 2
                                                           2 2
                                                               2 2
                                                   2 2
                                                       2 2
               system has two solutions:  ( a b +a c −b c  ,  a b +b c −a c  ,  a c +b c −a b  ),
                                              2abc        2abc        2abc
                           2 2
                   2 2
                       2 2
                                2 2
                                    2 2
                                        2 2
                                              2 2
                                                  2 2
                                                      2 2
                  a b +a c −b c  a b +b c −a c  a c +b c −a b
               (−            ,−            ,−           ).
                      2abc          2abc         2abc
               Solution 2: (i)× (ii)× (iii): (x + y) (x + z) (y + z) = a b c ⇒ (x + y)(x + z)(y + z) = ±abc
                                                                2
                                                2
                                                        2
                                                                     2 2 2
                                                         bc           ac            ab
               (iv). (iv)/(i),(iv)/(ii),(iv)/(iii) ⇒ y + z = ± ,x + z = ± ,x + y = ±  . The right hand side
                                                         a             b            c
               should have the same sign, thus
                                                                 bc
                                                      y + z =
                                                                 a
                                                                 ac
                                                     x + z =
                                                                  b
                                                                 ab
                                                     x + y =
                                                                  c
               or
                                                                  bc
                                                     y + z = −
                                                                  a
                                                                  ac
                                                     x + z = −
                                                                   b
                                                                  ab
                                                     x + y = −
                                                                   c
               They lead to the two solutions same as Solution 1.
                                                                   √                  √
               2.90      Nonnegative real numbers x,y,z satisfy  4  5x+9y+4z  − 68 × 2  5x+9y+4z  + 256 = 0 .
                                                                                                          
               Find the maximum and minimum values of  x + y + z .
                              √
                                                    2
               Solution: Let  2  5x+9y+4z  = t , then  t − 68t + 256 = 0 ⇒ (t − 4)(t − 64) = 0 ⇒ t =4 or
               t = 64.
                               √                     √
                                                 2
               When  t =4,  2   5x+9y+4z  =4 =2 ⇒      5x +9y +4z =2 ⇒ 5x +9y +4z =4.
                                √                       √
                                                   6
               When  t = 64,  2  5x+9y+4z  = 64 = 2 ⇒     5x +9y +4z =6 ⇒ 5x +9y +4z = 36.
               Since  x,y,z  are nonnegative real numbers,  4(x + y + z) ≤ 5x +9y +4z ≤ 9(x + y + z).
               When 5x +9y +4z = 36, x + y + z ≤ 9, thus x + y + z  has the maximum value 9, which
               can be obtained when  x = y =0,z =9.

               When  5x +9y +4z =4,  x + y + z ≥ 4/9, thus  x + y + z  has the minimum value 4/9,
               which can be obtained when  x = z =0,y =4/9.













                                            Download free eBooks at bookboon.com
                                                            83
   78   79   80   81   82   83   84   85   86   87   88