Page 86 - Elementary Algebra Exercise Book I
P. 86

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions



               Solution:
                 2
                                        2
                                                              2
                                       y
                                                         0
                y
               3 ·9 −10y  ·81 −11  =1 ⇔ 3 ·3 −20y  ·3 −44  =3 ⇒ y −20y−44 = 0 ⇒ (y+2)(y−22) =
                                             2
                     2
                                            y
                    y
                                                                   2
                                                              0
                   3 ·9
            0 ⇒ y = −2  −10y  ·81 −11  =1 ⇔ 3 ·3 −20y ·3 −44  =3 ⇒ y −20y−44 = 0 ⇒ (y+2)(y−22) =
               0 ⇒ y = −2  or  y = 22. We only need positive integer roots, so  y = 22. The coefficients
                                                           n
               of the last three terms are  C n n−2  + C n n−1  + C = 22, then
                                                           n
                                   n(n−1)
                2  2  1  1        n(n−1)              2 2
                                        +n = 21 ⇒ n +n−42 = 0 ⇒ (n+7)(n−6) =0 ⇒ n =6
              C +C +1 = 2 ⇒         2 2  +n = 21 ⇒ n +n−42 = 0 ⇒ (n+7)(n−6) =0 ⇒ n =6 since
               C +C +1 = 2 ⇒
                     n
                n
                 n
                      n
               n +7 > 0.
                                √ √       √ √            √ √      √ √


                   m
                           −22
               3 3  m  =0  −  + +  2 2m ⇔m ⇔  3 3  2m = 100  2 2m ⇒m ⇒  2 2m = 200 ⇒ m = 20000m = 200 ⇒ m = 20000.
                      =0.1.1
                                            2m = 100 + +
                   2 2                   2 2
               Since  n =6, the middle term of the expansion is
                       3
                                            ) = 20x
                             ) =
               T 4 = C (x lg x 3  6×5×4 (x lg x 3    3 lg x . According to the condition of the problem, we
                       6
                                  3×2×1
                         3 lg x x
                         3 lg               3 lg                3 lg                      2 2
                                            3 lg x x
                                                                3 lg x x
                                                                     = lg 1000 ⇒ 3(lg x) =3 ⇒ lg x
                                                                     = lg 1000 ⇒ 3(lg x) =3 ⇒ lg x = =
                     20x lg
                                                 = 1000 ⇒ lg x x lg x
                              = 20000 ⇒ x x lg x
                              = 20000 ⇒3
                                                 = 1000 ⇒ lg 3
                                                                                       2
               have   20xx  = 20000 ⇒ x       = 1000 ⇒ lg x       = lg 1000 ⇒ 3(lg x) =3 ⇒ lg x =
                       3
                   20x
                  ±1 ⇒ x = 10
                  ±1 ⇒ x = 10
               ±1 ⇒ x = 10  or  x =1/10.
               2.95      Let  p  be an odd prime number, find all positive integer roots of the equation
               x = y(y + p).
                 2
                           2
               Solution:  x = y(y + p) ⇔ (x + y)(x − y)= py . Since  p  is a prime number, we have
                p|x − y  or  p|x + y . If  p|x − y , then  x − y ≥ p  (note that  x> y ), thus we should have
               x + y ≤ y , impossible. Thus  p|x + y. Let  x + y = pn  (i), where  n  is a positive integer,
               then the original equation becomes  n(x − y)= y , thus  n|y  and  x =       n+1 y . Hence,
                                                                                            n
                                                                   2
                                                                                  2
               x + y =  2n+1 y  (ii). (i)&(ii) lead to  (2n + 1)y = n p . Since  (n , 2n + 1) = 1, we have
                          n                                           
                 2
               n |y .  (2n + 1)  y 2 = p  and  p  is  a prime,  thus   y 2 =1, then  p =2n +1 ⇒ n =  p−1 , then
                               n                                n                                 2
                                                                            2
                     2
               y = n =(   p−1 2      n+1 y =  n+1 2             p−1  ·  p+1  =  p −1  . Therefore, the original
                             ) ,  x =
                                                n = n(n + 1) =
                           2          n       n                   2   2      2  
                                                                  2
                                                                               ) .
               equation has only one positive integer root:  x =  p −1 ,y =( p−1 2
                                                                  2          2
               2.96       Consider the real coefficient equations
                                                      2
                                                    ax + bx 1 + c = x 2
                                                      1
                                                      2
                                                    ax + bx 2 + c = x 3
                                                      2
                                                                 . . .
                                               ax 2 n−1  + bx n−1 + c = x n
                                                      2
                                                   ax + bx n + c = x 1
                                                      n
               where a  =0, show that when Δ=(b − 1) − 4ac =0, this equation system has a unique solution.
                                                       2
                                            Download free eBooks at bookboon.com
                                                            86
   81   82   83   84   85   86   87   88   89   90   91