Page 87 - Elementary Algebra Exercise Book I
P. 87

ELEMENTARY ALGEBRA EXERCISE BOOK I                                               equAtions



               Proof: The system is equivalent to


                                                2
                                             ax +(b − 1)x 1 + c = x 2 − x 1
                                                1
                                                2
                                             ax +(b − 1)x 2 + c = x 3 − x 2
                                                2
                                                                . . .
                                         ax 2 n−1  +(b − 1)x n−1 + c = x n − x n−1
                                               2
                                             ax +(b − 1)x n + c = x 1 − x n
                                               n
                                                    2
               and we can observe that  Δ=(b − 1) − 4ac  is the discriminant of the quadratic equation
               ax +(b − 1)x + c =0 .  When  Δ=0 ,  ax +(b − 1)x i + c   is  a  perfect  square,  i.e.
                  2
                                                             2
                                                             i
                  2
                                                                                                   ) ≤ 0,
               ax +(b − 1)x i + c = a(x i +  b−1 2                                              b−1 2
                                                )   (i =1, 2, 3, ··· ,n). If  a< 0, then  a(x i +
                  i
                                                                                                2a
                                              2a
               thus  x 2 − x 1 ≤ 0,x 3 − x 2 ≤ 0, ··· ,x n − x n−1 ≤ 0,x 1 − x n ≤ 0 , which is equivalent to
               x 1 ≥ x 2 ≥ x 3 ≥ ··· ≥ x n−1 ≥ x n ≥ x 1 . Hence, we can only choose equal sign in all these
               inequalities, that is, x 1 = x 2 = x 3 = ··· = x n =  1−b  . If a> 0, same logic follows to obtain
                                                                2a
               x 1 = x 2 = x 3 = ··· = x n =  1−b . As a conclusion, the equation system has a unique solution
                                            2a
               when  Δ=0.


               2.97        Given  f(1) =  and when  n> 1,            f(n−1)  =  2nf(n−1)+1 , find  f(n).
                                                1
                                                5                     f(n)     1−2f(n)
               Solution: Multiply   f(n−1)  =  2nf(n−1)+1  by  f(n)[1 − 2f(n)] to obtain
                                    f(n)      1−2f(n)
                f(n − 1) − 2f(n − 1)f(n)= 2nf(n − 1)f(n)+ f(n)f(n − 1) − 2f(n − 1)f(n)= 2nf(n − 1)f(n)+ f(n), which is equivalent to
                f(n − 1) − f(n) = 2(n + 1)f(n)f(n − 1). Divide both sides by  f(n)f(n − 1) to obtain

                 1      1    = 2(n + 1). Replace  n  with  2, 3, ··· ,n  successively to obtain
               f(n)  −  f(n−1)
                 1     1  =2 × 3,   1      1  =2 × 4, ··· ,  1      1   = 2(n + 1)
               f(2)  −  f(1)       f(3)  −  f(2)           f(n)  −  f(n−1)          . Add them up to
                                                                   (3+n+1)(n−1)
                        1 1   1 1  = 2[3+ 4+ ··· +(n + 1)] = 2     (3+n+1)(n−1)  =(n − 1)(n + 4) 4)
                                                                               =(n − 1)(n +
               obtain  f(n) − −  f(1)  = 2[3+ 4+ ··· +(n + 1)] = 2 × ×  2 2                      . Hence,
                              f(1)
                       f(n)
                                                                   2
                 1  =   1  +(n − 1)(n +4) = 5+ n +3n − 4= n +3n +1.
                                                    2
               f(n)   f(1)
               As a conclusion, f (n) =     1    .
                                         n +3n+1
                                          2
                                                  1
               2.98       Solve the equation  (a + a )= m .
                                                      x
                                                           −x
                                                  2















                                            Download free eBooks at bookboon.com
                                                            87
   82   83   84   85   86   87   88   89   90   91   92