Page 10 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 10

Document Title
                Fundamentals of Stress and Vibration                                  Chapter Title
                [A Practical guide for aspiring Designers / Analysts]              2. Engineering Mechanics


                 Ї ƒ ‡š–‡”ƒŽ ˆ‘”…‡ ƒ…– ‘ –Ї ‘„Œ‡…–ǡ –Ї ‘„Œ‡…– ‡‹–Ї” †‡ˆ‘”• ‘” ƒ……‡Ž‡”ƒ–‡•Ǥ  Š‹• ”‡•—Ž–• ‹
                ™‘” †‘‡ „› –Ї ‡š–‡”ƒŽ ˆ‘”…‡ ‘ –Ї ‘„Œ‡…–Ǥ

                   …ƒ•‡  ‘ˆ  ‡Žƒ•–‹…  †‡ˆ‘”ƒ–‹‘ǡ  –Ї  „‘†›  •–‘”‡•  ’‘–‡–‹ƒŽ  ‡‡”‰›Ǥ   –Ї”™‹•‡ǡ  –Ї  „‘†›  †‡˜‡Ž‘’•
                ‹‡–‹… ‡‡”‰› „‡…ƒ—•‡ ‘ˆ –Ї ˜‡Ž‘…‹–› ‹†—…‡†Ǥ  ‹‡–‹… ‡‡”‰› ‹• …ƒ—•‡† †—‡ –‘ ‘–‹‘ ƒ••‘…‹ƒ–‡†
                ™‹–Š –Ї „‘†›Ǥ  Ž•‘ ‘–‡ –Šƒ–ǡ ‘•– ‘ˆ –Ї „‘†‹‡• ™‡ †‡ƒŽ ™‹–Šǡ ‹ –Š‹• „‘‘ǡ ƒ”‡ ”‹‰‹†ǡ ‡ƒ‹‰ǡ
                –Ї›  Šƒ˜‡  œ‡”‘  ‡Žƒ•–‹…‹–›Ǥ   ‘™‡˜‡”ǡ  –‘  ”‡’”‡•‡–  –Ї  ‡Žƒ•–‹…‹–›ǡ  •’”‹‰•  ƒ”‡  —•‡†ǡ  ™Š‹…Š  ‘
                …‘’”‡••‹‘ǡ •–‘”‡ ’‘–‡–‹ƒŽ ‡‡”‰›ǡ ƒ• •Š‘™ ‹ ȏ ‹‰ ʹǤͳȐǤ

                 ‘–Ї” ˆ‘” ‘ˆ ’‘–‡–‹ƒŽ ‡‡”‰›ǡ ‹• –Ї ‡‡”‰› †—‡ –‘ ‰”ƒ˜‹–›ǡ –Šƒ– ‹•ǡ ™Š‡ –Ї „‘†› ‹• ‘˜‡†
                ˆ”‘ ’‘•‹–‹‘ Ǯ ǯ –‘ Ǯ ǯ ƒ‰ƒ‹•– ‰”ƒ˜‹–›ǡ ™‘” ‹• •–‘”‡† ƒ• ‰”ƒ˜‹–ƒ–‹‘ƒŽ ’‘–‡–‹ƒŽ ‡‡”‰›ǡ ƒ• •Š‘™
                ‹ ȏ ‹‰ ʹǤʹȐǤ












                            [Fig 2.2: work done in displacing the car from position ‘A’ to position ‘B’]

                 ‘–‡ –Šƒ–ǡ ‰”ƒ˜‹–ƒ–‹‘ƒŽ ϐ‹‡Ž† ‹• …‘•‡”˜ƒ–‹˜‡ ƒ† –Ї ™‘” †‘‡ ‹• ‹†‡’‡†‡– ‘ˆ –Ї ’ƒ–ŠǤ  Ї
                ™‘” †‘‡ ‹• …ƒŽ…—Žƒ–‡† „› –Ї •Š‘”–‡•– †‹•–ƒ…‡ǡ –Šƒ– ‹•ǡ –Ї †‹•’Žƒ…‡‡– „‡–™‡‡ –™‘ ’‘‹–• ‹
                –Ї ˜‡”–‹…ƒŽ †‹”‡…–‹‘ ȋƒ‰ƒ‹•– ‰”ƒ˜‹–›ȌǤ
                 ‡– —• ‘™ †‡”‹˜‡ –Ї ‡š’”‡••‹‘ ˆ‘” ‹‡–‹…ǡ ’‘–‡–‹ƒŽ ƒ† •’”‹‰ ‡‡”‰‹‡•Ǥ

                Kinetic Energy: A force (F) acts on a mass (m) for (t-seconds), as shown in [Fig 2.1]. Find the
                kinetic energy of the mass.

                Let the displacement of the body, during (t-seconds) be ‘d’. therefore, the work done by the force is
                given by:  work done = Force ∗ average displacement
                Average displacement is considered, as the body is accelerating uniformly, and travels different
                displacements in different intervals of time. Mathematically, we have:

                                                s
                 Work done =  F ∗ s avg   =  ma ∗      - - - - (2.11)
                                                2
                Let us assume that the velocity of the body is ‘v’, after an interval of time ‘t’. Therefore, equation
                (2.11) can be rewritten as:


                                                velocity                          mv (v + 0)        1
                                                                                                         2
                 Work done =  ma ∗ s avg    =  m         ∗  velocity avg  ∗ time   =    ∗      t  =    mv
                                                  time                             t      2         2






                   Page 10      QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
   5   6   7   8   9   10   11   12   13   14   15