Page 1160 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1160
Chapter 64 Pathobiology of Acute Lymphoblastic Leukemia 1019
has been possible to devise new classification schemes for ALL that Perez-Andreu V, Roberts KG, Harvey RC, et al: Inherited GATA3 variants
reflect prognosis with precision. The development of new drugs based are associated with Ph-like childhood acute lymphoblastic leukemia and
on the molecular biology of ALL, whose promise is highlighted by risk of relapse. Nat Genet 45(12):1494–1498, 2013.
the early success of imatinib in BCR-ABL1–positive ALL, is clearly Roberts KG, Morin RD, Zhang J, et al: Genetic alterations activating kinase
a priority for the future and will likely take the form of compounds and cytokine receptor signaling in high-risk acute lymphoblastic leukemia.
developed to specifically interfere with oncoprotein function and Cancer Cell 22(2):153–166, 2012.
other prosurvival mechanisms specific to each patient’s leukemic Weng AP, Ferrando AA, Lee W, et al: Activating mutations of NOTCH1 in
blasts. Additionally, the discovery that enzymes such as kinases and human T cell acute lymphoblastic leukemia. Science 306(5694):269–271,
histone methyltransferases play important roles in ALL pathogenesis 2004.
has provided new opportunities for targeted drug development. The Yoda A, Yoda Y, Chiaretti S, et al: Functional screening identifies CRLF2 in
opportunity is now at hand to improve therapy through randomized precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA
trials coordinated on a nationwide or even worldwide scale that focus 107(1):252–257, 2010.
on key subsets of patients with acute leukemia whose lymphoblasts Zhang J, Ding L, Holmfeldt L, et al: The genetic basis of early T-cell precur-
harbor specific genetic abnormalities. sor acute lymphoblastic leukaemia. Nature 481(7380):157–163, 2012.
SUGGESTED READINGS CLINICAL IMPLICATIONS AND NOVEL THERAPEUTIC
STRATEGIES
COMPREHENSIVE REVIEWS
Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent
Armstrong SA, Look AT: Molecular genetics of acute lymphoblastic leukemia. on aberrant H3K79 methylation by DOT1L. Cancer Cell 1:66–78,
J Clin Oncol 23(26):6306–6315, 2005. 2011.
Roberts KG, Mullighan CG: Genomics in acute lymphoblastic leukaemia: Chen L, Deshpande AJ, Banka D, et al: Abrogation of MLL-AF10 and
insights and treatment implications. Nat Rev Clin Oncol 12(6):344–357, CALM-AF10-mediated transformation through genetic inactivation or
2015. pharmacological inhibition of the H3K79. Leukemia 27(4):813–822,
Roti G, Stegmaier K: New Approaches to Target T-cell ALL. Front Oncol 2013.
4:170, 2014. Coustan-Smith E, Mullighan CG, Onciu M, et al: Early T-cell precursor
Van Vlierberghe P, Ferrando A: The molecular basis of T cell acute lympho- leukaemia: A subtype of very high-risk acute lymphoblastic leukaemia.
blastic leukemia. J Clin Invest 122(10):3398–3406, 2014. Lancet Oncol 10(2):147–156, 2009.
Den Boer ML, van Slegtenhorst M, De Menezes RX, et al: A subtype of
childhood acute lymphoblastic leukaemia with poor treatment outcome:
SPECIFIC GENETIC LESIONS IN ACUTE LYMPHOBLAS- a genome-wide classification study. Lancet Oncol 10(2):125–134, 2009.
TIC LEUKEMIA Gutierrez A, Pan L, Groen RW, et al: Phenothiazines induce PP2A-
mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest
124(2):644–655, 2014.
Andersson AK, Ma J, Wang J, et al: The landscape of somatic mutations
in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet Knoechel B, Roderick J, Williamson KE, et al: An epigenetic mechanism of
47(4):330–337, 2015. resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat
Holmfeldt L, Wei L, Diaz-Flores E, et al: The genomic landscape of hypo- Genet 46(4):364–370, 2014.
diploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252, 2013. Piovan E, Yu J, Tosello V, et al: Direct reversal of glucocorticoid resistance
Lane AA, Chapuy B, Lin CY, et al: Triplication of a 21q22 region contributes by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell
to B cell transformation through HMGN1 overexpression and loss of 24(6):766–776, 2013.
histone H3 Lys27 trimethylation. Nat Genet 46(6):618–623, 2014. Schultz KR, Bowman WP, Aledo A, et al: Improved early event-free survival
Li N, Fassl A, Chick J, et al: Cyclin C is a haploinsufficient tumour suppres- with imatinib in Philadelphia chromosome-positive acute lymphoblastic
sor. Nat Cell Biol 16(11):1080–1091, 2014. leukemia: A children’s oncology group study. J Clin Oncol 27(31):5175–
Li Y, Schwab C, Ryan SL, et al: Constitutional and somatic rearrange- 5181, 2009.
ment of chromosome 21 in acute lymphoblastic leukaemia. Nature van der Veer A, Waanders E, Pieters R, et al: Independent prognostic value
508(7494):98–102, 2014. of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2
Mansour MR, Abraham BJ, Anders L, et al: An oncogenic super-enhancer expression, in children with B-cell precursor ALL. Blood 122(15):2622–
formed through somatic mutation of a noncoding intergenic element. 2629, 2013.
Science 346(6215):1373–1377, 2014.
Ntziachristos P, Tsirigos A, Van Vlierberghe P, et al: Genetic inactivation
of the polycomb repressive complex 2 in T cell acute lymphoblastic REFERENCES
leukemia. Nat Med 18(2):298–301, 2012.
Ntziachristo P, Tsirigos A, Weltead GG, et al: Contrasting roles of histone For the complete list of references, log on to www.expertconsult.com.
3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature
514(7523):513–517, 2014.

