Page 1160 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1160

Chapter 64  Pathobiology of Acute Lymphoblastic Leukemia  1019


            has been possible to devise new classification schemes for ALL that   Perez-Andreu V, Roberts KG, Harvey RC, et al: Inherited GATA3 variants
            reflect prognosis with precision. The development of new drugs based   are associated with Ph-like childhood acute lymphoblastic leukemia and
            on the molecular biology of ALL, whose promise is highlighted by   risk of relapse. Nat Genet 45(12):1494–1498, 2013.
            the early success of imatinib in BCR-ABL1–positive ALL, is clearly   Roberts KG, Morin RD, Zhang J, et al: Genetic alterations activating kinase
            a priority for the future and will likely take the form of compounds   and cytokine receptor signaling in high-risk acute lymphoblastic leukemia.
            developed  to  specifically  interfere  with  oncoprotein  function  and   Cancer Cell 22(2):153–166, 2012.
            other  prosurvival  mechanisms  specific  to  each  patient’s  leukemic   Weng AP, Ferrando AA, Lee W, et al: Activating mutations of NOTCH1 in
            blasts. Additionally, the discovery that enzymes such as kinases and   human T cell acute lymphoblastic leukemia. Science 306(5694):269–271,
            histone methyltransferases play important roles in ALL pathogenesis   2004.
            has provided new opportunities for targeted drug development. The   Yoda A, Yoda Y, Chiaretti S, et al: Functional screening identifies CRLF2 in
            opportunity is now at hand to improve therapy through randomized   precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA
            trials coordinated on a nationwide or even worldwide scale that focus   107(1):252–257, 2010.
            on key subsets of patients with acute leukemia whose lymphoblasts   Zhang J, Ding L, Holmfeldt L, et al: The genetic basis of early T-cell precur-
            harbor specific genetic abnormalities.                  sor acute lymphoblastic leukaemia. Nature 481(7380):157–163, 2012.

            SUGGESTED READINGS                                    CLINICAL IMPLICATIONS AND NOVEL THERAPEUTIC 
                                                                  STRATEGIES
            COMPREHENSIVE REVIEWS
                                                                  Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent
            Armstrong SA, Look AT: Molecular genetics of acute lymphoblastic leukemia.   on  aberrant  H3K79  methylation  by  DOT1L.  Cancer  Cell  1:66–78,
              J Clin Oncol 23(26):6306–6315, 2005.                  2011.
            Roberts KG, Mullighan CG: Genomics in acute lymphoblastic leukaemia:   Chen  L,  Deshpande  AJ,  Banka  D,  et al:  Abrogation  of  MLL-AF10  and
              insights and treatment implications. Nat Rev Clin Oncol 12(6):344–357,   CALM-AF10-mediated  transformation  through  genetic  inactivation  or
              2015.                                                 pharmacological  inhibition  of  the  H3K79.  Leukemia  27(4):813–822,
            Roti  G,  Stegmaier  K:  New  Approaches  to Target T-cell  ALL.  Front  Oncol   2013.
              4:170, 2014.                                        Coustan-Smith  E,  Mullighan  CG,  Onciu  M,  et al:  Early T-cell  precursor
            Van Vlierberghe P, Ferrando A: The molecular basis of T cell acute lympho-  leukaemia: A subtype of very high-risk acute lymphoblastic leukaemia.
              blastic leukemia. J Clin Invest 122(10):3398–3406, 2014.  Lancet Oncol 10(2):147–156, 2009.
                                                                  Den  Boer  ML,  van  Slegtenhorst  M,  De  Menezes  RX,  et al:  A  subtype  of
                                                                    childhood acute lymphoblastic leukaemia with poor treatment outcome:
            SPECIFIC GENETIC LESIONS IN ACUTE LYMPHOBLAS-           a genome-wide classification study. Lancet Oncol 10(2):125–134, 2009.
            TIC LEUKEMIA                                          Gutierrez  A,  Pan  L,  Groen  RW,  et al:  Phenothiazines  induce  PP2A-
                                                                    mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest
                                                                    124(2):644–655, 2014.
            Andersson  AK,  Ma  J, Wang  J,  et al: The  landscape  of  somatic  mutations
              in  infant  MLL-rearranged  acute  lymphoblastic  leukemias.  Nat  Genet   Knoechel B, Roderick J, Williamson KE, et al: An epigenetic mechanism of
              47(4):330–337, 2015.                                  resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat
            Holmfeldt L, Wei L, Diaz-Flores E, et al: The genomic landscape of hypo-  Genet 46(4):364–370, 2014.
              diploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252, 2013.  Piovan E, Yu J, Tosello V, et al: Direct reversal of glucocorticoid resistance
            Lane AA, Chapuy B, Lin CY, et al: Triplication of a 21q22 region contributes   by  AKT  inhibition  in  acute  lymphoblastic  leukemia.  Cancer  Cell
              to  B  cell  transformation  through  HMGN1  overexpression  and  loss  of   24(6):766–776, 2013.
              histone H3 Lys27 trimethylation. Nat Genet 46(6):618–623, 2014.  Schultz KR, Bowman WP, Aledo A, et al: Improved early event-free survival
            Li N, Fassl A, Chick J, et al: Cyclin C is a haploinsufficient tumour suppres-  with imatinib in Philadelphia chromosome-positive acute lymphoblastic
              sor. Nat Cell Biol 16(11):1080–1091, 2014.            leukemia: A children’s oncology group study. J Clin Oncol 27(31):5175–
            Li  Y,  Schwab  C,  Ryan  SL,  et al:  Constitutional  and  somatic  rearrange-  5181, 2009.
              ment  of  chromosome  21  in  acute  lymphoblastic  leukaemia.  Nature   van der Veer A, Waanders E, Pieters R, et al: Independent prognostic value
              508(7494):98–102, 2014.                               of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2
            Mansour MR, Abraham BJ, Anders L, et al: An oncogenic super-enhancer   expression, in children with B-cell precursor ALL. Blood 122(15):2622–
              formed  through  somatic  mutation  of  a  noncoding  intergenic  element.   2629, 2013.
              Science 346(6215):1373–1377, 2014.
            Ntziachristos  P,  Tsirigos  A,  Van  Vlierberghe  P,  et al:  Genetic  inactivation
              of  the  polycomb  repressive  complex  2  in  T  cell  acute  lymphoblastic   REFERENCES
              leukemia. Nat Med 18(2):298–301, 2012.
            Ntziachristo P, Tsirigos A, Weltead GG, et al: Contrasting roles of histone   For the complete list of references, log on to www.expertconsult.com.
              3  lysine  27  demethylases  in  acute  lymphoblastic  leukaemia.  Nature
              514(7523):513–517, 2014.
   1155   1156   1157   1158   1159   1160   1161   1162   1163   1164   1165