Page 1165 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1165
Chapter 64 Pathobiology of Acute Lymphoblastic Leukemia 1019.e5
176. Noetzli L, Lo RW, Lee-Sherick AB, et al: Germline mutations in network promoting leukemic cell growth. Proc Natl Acad Sci USA
ETV6 are associated with thrombocytopenia, red cell macrocytosis and 103(48):18261–18266, 2006.
predisposition to lymphoblastic leukemia. Nat Genet 47(5):535–538, 198. Sharma VM, Calvo JA, Draheim KM, et al: Notch1 contributes to
2015. mouse T-cell leukemia by directly inducing the expression of c-myc.
177. Zhang MY, Churpek JE, Keel SB, et al: Germline ETV6 mutations Mol Cell Biol 26(21):8022–8031, 2006.
in familial thrombocytopenia and hematologic malignancy. Nat Genet 199. Blackburn JS, Liu S, Raiser DM, et al: Notch signaling expands a
47(2):180–185, 2015. pre-malignant pool of T-cell acute lymphoblastic leukemia clones
178. Zelent A, Greaves M, Enver T: Role of the TEL-AML1 fusion gene in without affecting leukemia-propagating cell frequency. Leukemia
the molecular pathogenesis of childhood acute lymphoblastic leukae- 26(9):2069–2078, 2012.
mia. Oncogene 23(24):4275–4283, 2004. 200. Wang H, Zang C, Taing L, et al: NOTCH1-RBPJ complexes drive
179. Okuda T, van Deursen J, Hiebert SW, et al: AML1, the target of target gene expression through dynamic interactions with superenhanc-
multiple chromosomal translocations in human leukemia, is essential ers. Proc Natl Acad Sci USA 111(2):705–710, 2014.
for normal fetal liver hematopoiesis. Cell 84(2):321–330, 1996. 201. Trimarchi T, Bilal E, Ntziachristos P, et al: Genome-wide mapping and
180. Wang Q, Stacy T, Binder M, et al: Disruption of the Cbfa2 gene causes characterization of Notch-regulated long noncoding RNAs in acute
necrosis and hemorrhaging in the central nervous system and blocks leukemia. Cell 158(3):593–606, 2014.
definitive hematopoiesis. Proc Natl Acad Sci USA 93(8):3444–3449, 202. Roti G, Carlton A, Ross KN, et al: Complementary genomic screens
1996. identify SERCA as a therapeutic target in NOTCH1 mutated cancer.
181. Minelli A, Maserati E, Rossi G, et al: Familial platelet disorder with Cancer Cell 23(3):390–405, 2013.
propensity to acute myelogenous leukemia: genetic heterogeneity 203. Rizzo P, Osipo C, Foreman K, et al: Rational targeting of Notch signal-
and progression to leukemia via acquisition of clonal chromosome ing in cancer. Oncogene 27(38):5124–5131, 2008.
anomalies. Genes Chromosomes Cancer 40(3):165–171, 2004. 204. DeAngelo DJ, Stone RM, Silverman LB, et al A phase I clinical trial of
182. Ferrando AA, Look AT: Clinical implications of recurring chromosomal the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic
and associated molecular abnormalities in acute lymphoblastic leuke- leukemia/lymphoma (T-ALL) and other leukemias. Paper presented at:
mia. Semin Hematol 37(4):381–395, 2000. Abstract, American Society of Clinical Oncology 2006 Annual Meeting;
183. Schultz KR, Pullen DJ, Sather HN, et al: Risk- and response-based 2006, 2006.
classification of childhood B-precursor acute lymphoblastic leuke- 205. Milano J, McKay J, Dagenais C, et al: Modulation of notch processing
mia: a combined analysis of prognostic markers from the Pediatric by gamma-secretase inhibitors causes intestinal goblet cell metaplasia
Oncology Group (POG) and Children’s Cancer Group (CCG). Blood and induction of genes known to specify gut secretory lineage dif-
109(3):926–935, 2007. ferentiation. Toxicol Sci 82(1):341–358, 2004.
184. Loh ML, Goldwasser MA, Silverman LB, et al: Prospective analysis 206. van Es JH, van Gijn ME, Riccio O, et al: Notch/gamma-secretase
of TEL/AML1-positive patients treated on Dana-Farber Cancer inhibition turns proliferative cells in intestinal crypts and adenomas
Institute Consortium Protocol 95-01. Blood 107(11):4508–4513, into goblet cells. Nature 435(7044):959–963, 2005.
2006. 207. Real PJ, Tosello V, Palomero T, et al: Gamma-secretase inhibitors
185. Ellisen LW, Bird J, West DC, et al: TAN-1, the human homolog of the reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia.
Drosophila notch gene, is broken by chromosomal translocations in T Nat Med 15(1):50–58, 2009.
lymphoblastic neoplasms. Cell 66(4):649–661, 1991. 208. Samon JB, Castillo-Martin M, Hadler M, et al: Preclinical analysis
186. Weng AP, Ferrando AA, Lee W, et al: Activating mutations of of the gamma-secretase inhibitor PF-03084014 in combination with
NOTCH1 in human T cell acute lymphoblastic leukemia. Science glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer
306(5694):269–271, 2004. Ther 11(7):1565–1575, 2012.
187. Maillard I, Fang T, Pear WS: Regulation of lymphoid development, 209. Gutierrez A, Sanda T, Grebliunaite R, et al: High frequency of PTEN,
differentiation, and function by the Notch pathway. Annu Rev Immunol PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia.
23:945–974, 2005. Blood 114(3):647–650, 2009.
188. Radtke F, Wilson A, Mancini SJ, et al: Notch regulation of lymphocyte 210. Palomero T, Sulis ML, Cortina M, et al: Mutational loss of PTEN
development and function. Nat Immunol 5(3):247–253, 2004. induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med
189. Grabher C, von Boehmer H, Look AT: Notch 1 activation in the 13(10):1203–1210, 2007.
molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat 211. Gutierrez A, Grebliunaite R, Feng H, et al: Pten mediates Myc
Rev Cancer 6(5):347–359, 2006. oncogene dependence in a conditional zebrafish model of T cell acute
190. Pear WS, Aster JC, Scott ML, et al: Exclusive development of T cell lymphoblastic leukemia. J Exp Med 208(8):1595–1603, 2011.
neoplasms in mice transplanted with bone marrow expressing activated 212. Dail M, Wong J, Lawrence J, et al: Loss of oncogenic Notch1
Notch alleles. J Exp Med 183(5):2283–2291, 1996. with resistance to a PI3K inhibitor in T-cell leukaemia. Nature
191. Malecki MJ, Sanchez-Irizarry C, Mitchell JL, et al: Leukemia-associated 513(7519):512–516, 2014.
mutations within the NOTCH1 heterodimerization domain fall into at 213. Knoechel B, Roderick JE, Williamson KE, et al: An epigenetic mecha-
least two distinct mechanistic classes. Mol Cell Biol 26(12):4642–4651, nism of resistance to targeted therapy in T cell acute lymphoblastic
2006. leukemia. Nat Genet 46(4):364–370, 2014.
192. Chiang MY, Xu ML, Histen G, et al: Identification of a conserved 214. Yashiro-Ohtani Y, Wang H, Zang C, et al: Long-range enhancer activity
negative regulatory sequence that influences the leukemogenic activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc
of NOTCH1. Mol Cell Biol 26(16):6261–6271, 2006. Natl Acad Sci USA 111(46):E4946–E4953, 2014.
193. O’Neil J, Grim J, Strack P, et al FBW7 Mutations in Leukemic Cells 215. Filippakopoulos P, Qi J, Picaud S, et al: Selective inhibition of BET
Mediate NOTCH Pathway Activation and Resistance to Gamma-Secretase bromodomains. Nature 468(7327):1067–1073, 2010.
Inhibitors. In press. 2007. 216. Bhatia K, Huppi K, Spangler G, et al: Point mutations in the c-Myc
194. Li N, Fassl A, Chick J, et al: Cyclin C is a haploinsufficient tumour transactivation domain are common in Burkitt’s lymphoma and mouse
suppressor. Nat Cell Biol 16(11):1080–1091, 2014. plasmacytomas. Nat Genet 5(1):56–61, 1993.
195. Roderick JE, Tesell J, Shultz LD, et al: c-Myc inhibition prevents leuke- 217. Albert T, Urlbauer B, Kohlhuber F, et al: Ongoing mutations in the
mia initiation in mice and impairs the growth of relapsed and induction N-terminal domain of c-Myc affect transactivation in Burkitt’s lym-
failure pediatric T-ALL cells. Blood 123(7):1040–1050, 2014. phoma cell lines. Oncogene 9(3):759–763, 1994.
196. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al: c-Myc is an impor- 218. Yano T, Sander CA, Clark HM, et al: Clustered mutations in the second
tant direct target of Notch1 in T-cell acute lymphoblastic leukemia/ exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene
lymphoma. Genes Dev 20(15):2096–2109, 2006. 8(10):2741–2748, 1993.
197. Palomero T, Lim WK, Odom DT, et al: NOTCH1 directly 219. Sears RC: The life cycle of C-myc: from synthesis to degradation. Cell
regulates c-MYC and activates a feed-forward-loop transcriptional Cycle 3(9):1133–1137, 2004.

