Page 1162 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1162

1019.e2  Part VII  Hematologic Malignancies


            childhood acute lymphoblastic leukemia. J Clin Oncol 16(12):3768–  68.  Hochheimer A, Tjian R: Diversified transcription initiation complexes
            3773, 1998.                                           expand promoter selectivity and tissue-specific gene expression. Genes
         46.  Pui CH, Behm FG, Singh B, et al: Myeloid-associated antigen expres-  Dev 17(11):1309–1320, 2003.
            sion lacks prognostic value in childhood acute lymphoblastic leukemia   69.  Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals wide-
            treated with intensive multiagent chemotherapy. Blood 75(1):198–202,   spread pausing and divergent initiation at human promoters. Science
            1990.                                                 322(5909):1845–1848, 2008.
         47.  Casasnovas RO, Slimane FK, Garand R, et al: Immunological classifica-  70.  Peterlin BM, Price DH: Controlling the elongation phase of transcrip-
            tion  of  acute  myeloblastic  leukemias:  relevance  to  patient  outcome.   tion with P-TEFb. Mol Cell 23(3):297–305, 2006.
            Leukemia 17(3):515–527, 2003.                      71.  Margaritis T, Holstege FC: Poised RNA polymerase II gives pause for
         48.  Dalla-Favera R, Bregni M, Erikson J, et al: Human c-myc onc gene is   thought. Cell 133(4):581–584, 2008.
            located on the region of chromosome 8 that is translocated in Burkitt   72.  Rahl PB, Lin CY, Seila AC, et al: c-Myc regulates transcriptional pause
            lymphoma cells. Proc Natl Acad Sci USA 79(24):7824–7827, 1982.  release. Cell 141(3):432–445, 2010.
         49.  Taub  R,  Kirsch  I,  Morton  C,  et al:  Translocation  of  the  c-myc   73.  Lin CY, Loven J, Rahl PB, et al: Transcriptional amplification in tumor
            gene  into  the  immunoglobulin  heavy  chain  locus  in  human  Burkitt   cells with elevated c-Myc. Cell 151(1):56–67, 2012.
            lymphoma  and  murine  plasmacytoma  cells.  Proc  Natl  Acad  Sci  USA   74.  Nie Z, Hu G, Wei G, et al: c-Myc is a universal amplifier of expressed
            79(24):7837–7841, 1982.                               genes  in  lymphocytes  and  embryonic  stem  cells.  Cell  151(1):68–79,
         50.  Adams  JM,  Gerondakis  S, Webb  E,  et al:  Cellular  myc  oncogene  is   2012.
            altered by chromosome translocation to an immunoglobulin locus in   75.  Brown L, Cheng JT, Chen Q, et al: Site-specific recombination of the
            murine plasmacytomas and is rearranged similarly in human Burkitt   tal-1 gene is a common occurrence in human T cell leukemia. EMBO
            lymphomas. Proc Natl Acad Sci USA 80(7):1982–1986, 1983.  J 9(10):3343–3351, 1990.
         51.  Erikson J, ar-Rushdi A, Drwinga HL, et al: Transcriptional activation of   76.  Aplan PD, Lombardi DP, Kirsch IR: Structural characterization of SIL,
            the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad   a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol
            Sci USA 80(3):820–824, 1983.                          Cell Biol 11(11):5462–5469, 1991.
         52.  Erikson  J,  Nishikura  K,  ar-Rushdi  A,  et al:  Translocation  of  an   77.  Bernard O, Lecointe N, Jonveaux P, et al: Two site-specific deletions
            immunoglobulin kappa locus to a region 3’ of an unrearranged c-myc   and  t(1;14)  translocation  restricted  to  human T-cell  acute  leukemias
            oncogene  enhances  c-myc  transcription.  Proc  Natl  Acad  Sci  USA   disrupt the 5’ part of the tal-1 gene. Oncogene 6(8):1477–1488, 1991.
            80(24):7581–7585, 1983.                            78.  Aplan  PD,  Lombardi  DP,  Reaman  GH,  et al:  Involvement  of  the
         53.  Emanuel BS, Selden JR, Chaganti RS, et al: The 2p breakpoint of a 2;8   putative hematopoietic transcription factor SCL in T-cell acute lym-
            translocation in Burkitt lymphoma interrupts the V kappa locus. Proc   phoblastic leukemia. Blood 79(5):1327–1333, 1992.
            Natl Acad Sci USA 81(8):2444–2446, 1984.           79.  Breit  TM,  Mol  EJ,  Wolvers-Tettero  IL,  et al:  Site-specific  deletions
         54.  Hollis GF, Mitchell KF, Battey J, et al: A variant translocation places the   involving the tal-1 and sil genes are restricted to cells of the T cell recep-
            lambda immunoglobulin genes 3’ to the c-myc oncogene in Burkitt’s   tor alpha/beta lineage: T cell receptor delta gene deletion mechanism
            lymphoma. Nature 307(5953):752–755, 1984.             affects multiple genes. J Exp Med 177(4):965–977, 1993.
         55.  Rappold  GA,  Hameister  H,  Cremer  T,  et al:  c-myc  and  immuno-  80.  Bash  RO,  Hall  S, Timmons  CF,  et al:  Does  activation  of  the TAL1
            globulin kappa light chain constant genes are on the 8q+ chromosome   gene occur in a majority of patients with T-cell acute lymphoblastic
            of three Burkitt lymphoma lines with t(2;8) translocations. EMBO J   leukemia?  A  pediatric  oncology  group  study.  Blood  86(2):666–676,
            3(12):2951–2955, 1984.                                1995.
         56.  Taub R, Kelly K, Battey J, et al: A novel alteration in the structure of   81.  Shivdasani  RA,  Mayer  EL,  Orkin  SH:  Absence  of  blood  formation
            an  activated  c-myc  gene  in  a  variant  t(2;8)  Burkitt  lymphoma.  Cell   in  mice  lacking  the T-cell  leukaemia  oncoprotein  tal-1/SCL.  Nature
            37(2):511–520, 1984.                                  373(6513):432–434, 1995.
         57.  Dang  CV,  O’Donnell  KA,  Zeller  KI,  et al:  The  c-Myc  target  gene   82.  Robb L, Lyons I, Li R, et al: Absence of yolk sac hematopoiesis from
            network. Semin Cancer Biol 16(4):253–264, 2006.       mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA
         58.  Coller  HA,  Grandori  C,  Tamayo  P,  et al:  Expression  analysis  with   92(15):7075–7079, 1995.
            oligonucleotide microarrays reveals that MYC regulates genes involved   83.  Mikkola  HK,  Klintman  J, Yang  H,  et al:  Haematopoietic  stem  cells
            in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA   retain long-term repopulating activity and multipotency in the absence
            97(7):3260–3265, 2000.                                of  stem-cell  leukaemia  SCL/tal-1  gene.  Nature  421(6922):547–551,
         59.  van Riggelen J, Yetil A, Felsher DW: MYC as a regulator of ribosome   2003.
            biogenesis and protein synthesis. Nat Rev Cancer 10(4):301–309, 2010.  84.  Condorelli  GL,  Facchiano  F, Valtieri  M,  et al: T-cell-directed TAL-1
         60.  Barna M, Pusic A, Zollo O, et al: Suppression of Myc oncogenic activity   expression induces T-cell malignancies in transgenic mice. Cancer Res
            by ribosomal protein haploinsufficiency. Nature 456(7224):971–975,   56(22):5113–5119, 1996.
            2008.                                              85.  Kelliher  MA,  Seldin  DC,  Leder  P: Tal-1  induces T  cell  acute  lym-
         61.  Bui  TV,  Mendell  JT:  Myc:  Maestro  of  MicroRNAs.  Genes  Cancer   phoblastic  leukemia  accelerated  by  casein  kinase  IIalpha.  EMBO  J
            1(6):568–575, 2010.                                   15(19):5160–5166, 1996.
         62.  O’Donnell  KA,  Wentzel  EA,  Zeller  KI,  et al:  c-Myc-regulated   86.  Baer  R:  TAL1,  TAL2  and  LYL1:  a  family  of  basic  helix-loop-helix
            microRNAs  modulate  E2F1  expression.  Nature  435(7043):839–843,   proteins  implicated  in  T  cell  acute  leukaemia.  Semin  Cancer  Biol
            2005.                                                 4(6):341–347, 1993.
         63.  Grandori C, Mac J, Siebelt F, et al: Myc-Max heterodimers activate a   87.  Gutierrez A, Sanda T, Ma W, et al: Inactivation of LEF1 in T-cell acute
            DEAD box gene and interact with multiple E box-related sites in vivo.   lymphoblastic leukemia. Blood 115(14):2845–2851, 2010.
            EMBO J 15(16):4344–4357, 1996.                     88.  Mansour  MR,  Abraham  BJ,  Anders  L,  et al:  An  oncogenic  super-
         64.  Ayer DE, Kretzner L, Eisenman RN: Mad: a heterodimeric partner for   enhancer formed through somatic mutation of a noncoding intergenic
            Max that antagonizes Myc transcriptional activity. Cell 72(2):211–222,   element. Science 346(6215):1373–1377, 2014.
            1993.                                              89.  Palomero  T,  Odom  DT,  O’Neil  J,  et al:  Transcriptional  regulatory
         65.  Foley KP, Eisenman RN: Two MAD tails: what the recent knockouts of   networks  downstream  of  TAL1/SCL  in  T-cell  acute  lymphoblastic
            Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. Biochim   leukemia. Blood 108(3):986–992, 2006.
            Biophys Acta 1423(3):M37–M47, 1999.                90.  Sanda T, Lawton LN, Barrasa MI, et al: Core transcriptional regula-
         66.  Hurlin  PJ,  Queva  C,  Eisenman  RN:  Mnt:  a  novel  Max-interacting   tory circuit controlled by the TAL1 complex in human T cell acute
            protein and Myc antagonist. Curr Top Microbiol Immunol 224:115–121,   lymphoblastic leukemia. Cancer Cell 22(2):209–221, 2012.
            1997.                                              91.  O’Neil  J,  Shank  J,  Cusson  N,  et al:  TAL1/SCL  induces  leukemia
         67.  Ptashne M, Gann A: Transcriptional activation by recruitment. Nature   by  inhibiting  the  transcriptional  activity  of  E47/HEB.  Cancer  Cell
            386(6625):569–577, 1997.                              5(6):587–596, 2004.
   1157   1158   1159   1160   1161   1162   1163   1164   1165   1166   1167