Page 1162 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1162
1019.e2 Part VII Hematologic Malignancies
childhood acute lymphoblastic leukemia. J Clin Oncol 16(12):3768– 68. Hochheimer A, Tjian R: Diversified transcription initiation complexes
3773, 1998. expand promoter selectivity and tissue-specific gene expression. Genes
46. Pui CH, Behm FG, Singh B, et al: Myeloid-associated antigen expres- Dev 17(11):1309–1320, 2003.
sion lacks prognostic value in childhood acute lymphoblastic leukemia 69. Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals wide-
treated with intensive multiagent chemotherapy. Blood 75(1):198–202, spread pausing and divergent initiation at human promoters. Science
1990. 322(5909):1845–1848, 2008.
47. Casasnovas RO, Slimane FK, Garand R, et al: Immunological classifica- 70. Peterlin BM, Price DH: Controlling the elongation phase of transcrip-
tion of acute myeloblastic leukemias: relevance to patient outcome. tion with P-TEFb. Mol Cell 23(3):297–305, 2006.
Leukemia 17(3):515–527, 2003. 71. Margaritis T, Holstege FC: Poised RNA polymerase II gives pause for
48. Dalla-Favera R, Bregni M, Erikson J, et al: Human c-myc onc gene is thought. Cell 133(4):581–584, 2008.
located on the region of chromosome 8 that is translocated in Burkitt 72. Rahl PB, Lin CY, Seila AC, et al: c-Myc regulates transcriptional pause
lymphoma cells. Proc Natl Acad Sci USA 79(24):7824–7827, 1982. release. Cell 141(3):432–445, 2010.
49. Taub R, Kirsch I, Morton C, et al: Translocation of the c-myc 73. Lin CY, Loven J, Rahl PB, et al: Transcriptional amplification in tumor
gene into the immunoglobulin heavy chain locus in human Burkitt cells with elevated c-Myc. Cell 151(1):56–67, 2012.
lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 74. Nie Z, Hu G, Wei G, et al: c-Myc is a universal amplifier of expressed
79(24):7837–7841, 1982. genes in lymphocytes and embryonic stem cells. Cell 151(1):68–79,
50. Adams JM, Gerondakis S, Webb E, et al: Cellular myc oncogene is 2012.
altered by chromosome translocation to an immunoglobulin locus in 75. Brown L, Cheng JT, Chen Q, et al: Site-specific recombination of the
murine plasmacytomas and is rearranged similarly in human Burkitt tal-1 gene is a common occurrence in human T cell leukemia. EMBO
lymphomas. Proc Natl Acad Sci USA 80(7):1982–1986, 1983. J 9(10):3343–3351, 1990.
51. Erikson J, ar-Rushdi A, Drwinga HL, et al: Transcriptional activation of 76. Aplan PD, Lombardi DP, Kirsch IR: Structural characterization of SIL,
the translocated c-myc oncogene in burkitt lymphoma. Proc Natl Acad a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol
Sci USA 80(3):820–824, 1983. Cell Biol 11(11):5462–5469, 1991.
52. Erikson J, Nishikura K, ar-Rushdi A, et al: Translocation of an 77. Bernard O, Lecointe N, Jonveaux P, et al: Two site-specific deletions
immunoglobulin kappa locus to a region 3’ of an unrearranged c-myc and t(1;14) translocation restricted to human T-cell acute leukemias
oncogene enhances c-myc transcription. Proc Natl Acad Sci USA disrupt the 5’ part of the tal-1 gene. Oncogene 6(8):1477–1488, 1991.
80(24):7581–7585, 1983. 78. Aplan PD, Lombardi DP, Reaman GH, et al: Involvement of the
53. Emanuel BS, Selden JR, Chaganti RS, et al: The 2p breakpoint of a 2;8 putative hematopoietic transcription factor SCL in T-cell acute lym-
translocation in Burkitt lymphoma interrupts the V kappa locus. Proc phoblastic leukemia. Blood 79(5):1327–1333, 1992.
Natl Acad Sci USA 81(8):2444–2446, 1984. 79. Breit TM, Mol EJ, Wolvers-Tettero IL, et al: Site-specific deletions
54. Hollis GF, Mitchell KF, Battey J, et al: A variant translocation places the involving the tal-1 and sil genes are restricted to cells of the T cell recep-
lambda immunoglobulin genes 3’ to the c-myc oncogene in Burkitt’s tor alpha/beta lineage: T cell receptor delta gene deletion mechanism
lymphoma. Nature 307(5953):752–755, 1984. affects multiple genes. J Exp Med 177(4):965–977, 1993.
55. Rappold GA, Hameister H, Cremer T, et al: c-myc and immuno- 80. Bash RO, Hall S, Timmons CF, et al: Does activation of the TAL1
globulin kappa light chain constant genes are on the 8q+ chromosome gene occur in a majority of patients with T-cell acute lymphoblastic
of three Burkitt lymphoma lines with t(2;8) translocations. EMBO J leukemia? A pediatric oncology group study. Blood 86(2):666–676,
3(12):2951–2955, 1984. 1995.
56. Taub R, Kelly K, Battey J, et al: A novel alteration in the structure of 81. Shivdasani RA, Mayer EL, Orkin SH: Absence of blood formation
an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature
37(2):511–520, 1984. 373(6513):432–434, 1995.
57. Dang CV, O’Donnell KA, Zeller KI, et al: The c-Myc target gene 82. Robb L, Lyons I, Li R, et al: Absence of yolk sac hematopoiesis from
network. Semin Cancer Biol 16(4):253–264, 2006. mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA
58. Coller HA, Grandori C, Tamayo P, et al: Expression analysis with 92(15):7075–7079, 1995.
oligonucleotide microarrays reveals that MYC regulates genes involved 83. Mikkola HK, Klintman J, Yang H, et al: Haematopoietic stem cells
in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci USA retain long-term repopulating activity and multipotency in the absence
97(7):3260–3265, 2000. of stem-cell leukaemia SCL/tal-1 gene. Nature 421(6922):547–551,
59. van Riggelen J, Yetil A, Felsher DW: MYC as a regulator of ribosome 2003.
biogenesis and protein synthesis. Nat Rev Cancer 10(4):301–309, 2010. 84. Condorelli GL, Facchiano F, Valtieri M, et al: T-cell-directed TAL-1
60. Barna M, Pusic A, Zollo O, et al: Suppression of Myc oncogenic activity expression induces T-cell malignancies in transgenic mice. Cancer Res
by ribosomal protein haploinsufficiency. Nature 456(7224):971–975, 56(22):5113–5119, 1996.
2008. 85. Kelliher MA, Seldin DC, Leder P: Tal-1 induces T cell acute lym-
61. Bui TV, Mendell JT: Myc: Maestro of MicroRNAs. Genes Cancer phoblastic leukemia accelerated by casein kinase IIalpha. EMBO J
1(6):568–575, 2010. 15(19):5160–5166, 1996.
62. O’Donnell KA, Wentzel EA, Zeller KI, et al: c-Myc-regulated 86. Baer R: TAL1, TAL2 and LYL1: a family of basic helix-loop-helix
microRNAs modulate E2F1 expression. Nature 435(7043):839–843, proteins implicated in T cell acute leukaemia. Semin Cancer Biol
2005. 4(6):341–347, 1993.
63. Grandori C, Mac J, Siebelt F, et al: Myc-Max heterodimers activate a 87. Gutierrez A, Sanda T, Ma W, et al: Inactivation of LEF1 in T-cell acute
DEAD box gene and interact with multiple E box-related sites in vivo. lymphoblastic leukemia. Blood 115(14):2845–2851, 2010.
EMBO J 15(16):4344–4357, 1996. 88. Mansour MR, Abraham BJ, Anders L, et al: An oncogenic super-
64. Ayer DE, Kretzner L, Eisenman RN: Mad: a heterodimeric partner for enhancer formed through somatic mutation of a noncoding intergenic
Max that antagonizes Myc transcriptional activity. Cell 72(2):211–222, element. Science 346(6215):1373–1377, 2014.
1993. 89. Palomero T, Odom DT, O’Neil J, et al: Transcriptional regulatory
65. Foley KP, Eisenman RN: Two MAD tails: what the recent knockouts of networks downstream of TAL1/SCL in T-cell acute lymphoblastic
Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. Biochim leukemia. Blood 108(3):986–992, 2006.
Biophys Acta 1423(3):M37–M47, 1999. 90. Sanda T, Lawton LN, Barrasa MI, et al: Core transcriptional regula-
66. Hurlin PJ, Queva C, Eisenman RN: Mnt: a novel Max-interacting tory circuit controlled by the TAL1 complex in human T cell acute
protein and Myc antagonist. Curr Top Microbiol Immunol 224:115–121, lymphoblastic leukemia. Cancer Cell 22(2):209–221, 2012.
1997. 91. O’Neil J, Shank J, Cusson N, et al: TAL1/SCL induces leukemia
67. Ptashne M, Gann A: Transcriptional activation by recruitment. Nature by inhibiting the transcriptional activity of E47/HEB. Cancer Cell
386(6625):569–577, 1997. 5(6):587–596, 2004.

