Page 1164 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1164

1019.e4  Part VII  Hematologic Malignancies


        134.  Raimondi  SC,  Behm  FG,  Roberson  PK,  et al:  Cytogenetics  of  pre-  154.  Inaba  T,  Inukai  T,  Yoshihara  T,  et al:  Reversal  of  apoptosis  by  the
            B-cell  acute  lymphoblastic  leukemia  with  emphasis  on  prognostic   leukaemia-associated E2A-HLF chimaeric transcription factor. Nature
            implications of the t(1;19). J Clin Oncol 8(8):1380–1388, 1990.  382(6591):541–544, 1996.
        135.  Nourse J,  Mellentin  JD,  Galili  N,  et al:  Chromosomal  translocation   155.  Metzstein  MM,  Hengartner  MO,  Tsung  N,  et al:  Transcriptional
            t(1;19) results in synthesis of a homeobox fusion mRNA that codes for   regulator of programmed cell death encoded by Caenorhabditis elegans
            a potential chimeric transcription factor. Cell 60(4):535–545, 1990.  gene ces-2. Nature 382(6591):545–547, 1996.
        136.  Kamps MP, Murre C, Sun XH, et al: A new homeobox gene contributes   156.  Thompson  CB:  Transcription.  A  fate  worse  than  death.  Nature
            the DNA binding domain of the t(1;19) translocation protein in pre-B   382(6591):492–493, 1996.
            ALL. Cell 60(4):547–555, 1990.                    157.  Inukai T, Inoue A, Kurosawa H, et al: SLUG, a ces-1-related zinc finger
        137.  Mellentin  JD,  Nourse  J,  Hunger  SP,  et al:  Molecular  analysis  of  the   transcription factor gene with antiapoptotic activity, is a downstream
            t(1;19)  breakpoint  cluster  region  in  pre-B  cell  acute  lymphoblastic   target of the E2A-HLF oncoprotein. Mol Cell 4(3):343–352, 1999.
            leukemias. Genes Chromosomes Cancer 2(3):239–247, 1990.  158.  Metzstein  MM,  Horvitz  HR:  The  C.  elegans  cell  death  specifica-
        138.  Van  Dijk  MA,  Voorhoeve  PM,  Murre  C:  Pbx1  is  converted  into  a   tion  gene  ces-1  encodes  a  snail  family  zinc  finger  protein.  Mol  Cell
            transcriptional activator upon acquiring the N-terminal region of E2A   4(3):309–319, 1999.
            in pre-B-cell acute lymphoblastoid leukemia. Proc Natl Acad Sci USA   159.  Inoue  A,  Seidel  MG,  Wu  W,  et al:  Slug,  a  highly  conserved  zinc
            90(13):6061–6065, 1993.                               finger transcriptional repressor, protects hematopoietic progenitor cells
        139.  LeBrun  DP,  Cleary  ML:  Fusion  with  E2A  alters  the  transcriptional   from radiation-induced apoptosis in vivo. Cancer Cell 2(4):279–288,
            properties  of  the  homeodomain  protein  PBX1  in  t(1;19)  leukemias.   2002.
            Oncogene 9(6):1641–1647, 1994.                    160.  Wu  WS,  Heinrichs  S,  Xu  D,  et al:  Slug  antagonizes  p53-mediated
        140.  Lu Q, Wright DD, Kamps MP: Fusion with E2A converts the Pbx1   apoptosis  of  hematopoietic  progenitors  by  repressing  puma.  Cell
            homeodomain protein into a constitutive transcriptional activator in   123(4):641–653, 2005.
            human  leukemias  carrying  the  t(1;19)  translocation.  Mol  Cell  Biol   161.  Dreyling  MH,  Martinez-Climent  JA,  Zheng  M,  et al: The  t(10;11)
            14(6):3938–3948, 1994.                                (p13;q14)  in  the  U937  cell  line  results  in  the  fusion  of  the  AF10
        141.  Kamps MP, Baltimore D: E2A-Pbx1, the t(1;19) translocation protein   gene  and  CALM,  encoding  a  new  member  of  the  AP-3  clathrin
            of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid   assembly protein family. Proc Natl Acad Sci USA 93(10):4804–4809,
            leukemia in mice. Mol Cell Biol 13(1):351–357, 1993.  1996.
        142.  Dedera DA, Waller EK, LeBrun DP, et al: Chimeric homeobox gene   162.  Asnafi  V,  Radford-Weiss  I,  Dastugue  N,  et al:  CALM-AF10  is  a
            E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas   common fusion transcript in T-ALL and is specific to the TCRgam-
            in transgenic mice. Cell 74(5):833–843, 1993.         madelta lineage. Blood 102(3):1000–1006, 2003.
        143.  Monica K, LeBrun DP, Dedera DA, et al: Transformation properties of   163.  Okada  Y,  Jiang  Q,  Lemieux  M,  et al:  Leukaemic  transformation  by
            the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the   CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell
            Pbx1 homeodomain is dispensable. Mol Cell Biol 14(12):8304–8314,   Biol 8(9):1017–1024, 2006.
            1994.                                             164.  Deshpande  AJ,  Cusan  M,  Rawat  VP,  et al:  Acute  myeloid  leukemia
        144.  Kamps MP, Wright DD, Lu Q: DNA-binding by oncoprotein E2a-  is  propagated  by  a  leukemic  stem  cell  with  lymphoid  characteristics
            Pbx1  is  important  for  blocking  differentiation  but  dispensable  for   in  a  mouse  model  of  CALM/AF10-positive  leukemia.  Cancer  Cell
            fibroblast transformation. Oncogene 12(1):19–30, 1996.  10(5):363–374, 2006.
        145.  Crist  WM,  Carroll  AJ,  Shuster  JJ,  et al:  Poor  prognosis  of  children   165.  Lin YH, Kakadia PM, Chen Y, et al: Global reduction of the epigenetic
            with pre-B acute lymphoblastic leukemia is associated with the t(1;19)  H3K79  methylation  mark  and  increased  chromosomal  instability  in
            (q23;p13): a Pediatric Oncology Group study. Blood 76(1):117–122,   CALM-AF10-positive leukemias. Blood 114(3):651–658, 2009.
            1990.                                             166.  Chen L, Deshpande AJ, Banka D, et al: Abrogation of MLL-AF10 and
        146.  Pui  CH,  Crist  WM:  Cytogenetic  abnormalities  in  childhood  acute   CALM-AF10-mediated transformation through genetic inactivation or
            lymphoblastic leukemia correlates with clinical features and treatment   pharmacological  inhibition  of  the  H3K79  methyltransferase  Dot1l.
            outcome. Leuk Lymphoma 7(4):259–274, 1992.            Leukemia 27(4):813–822, 2013.
        147.  Rivera GK, Raimondi SC, Hancock ML, et al: Improved outcome in   167.  Greaves  MF,  Wiemels  J:  Origins  of  chromosome  translocations  in
            childhood acute lymphoblastic leukaemia with reinforced early treatment   childhood leukaemia. Nat Rev Cancer 3(9):639–649, 2003.
            and  rotational  combination  chemotherapy.  Lancet  337(8733):61–66,   168.  Greaves MF, Maia AT, Wiemels JL, et al: Leukemia in twins: lessons in
            1991.                                                 natural history. Blood 102(7):2321–2333, 2003.
        148.  Uckun  FM,  Sensel  MG,  Sather  HN,  et al:  Clinical  significance  of   169.  Mori H, Colman SM, Xiao Z, et al: Chromosome translocations and
            translocation t(1;19) in childhood acute lymphoblastic leukemia in the   covert leukemic clones are generated during normal fetal development.
            context of contemporary therapies: a report from the Children’s Cancer   Proc Natl Acad Sci USA 99(12):8242–8247, 2002.
            Group. J Clin Oncol 16(2):527–535, 1998.          170.  Golub TR, Barker GF, Stegmaier K, et al: The TEL gene contributes
        149.  Hunger SP, Ohyashiki K, Toyama K, et al: Hlf, a novel hepatic bZIP   to  the  pathogenesis  of  myeloid  and  lymphoid  leukemias  by  diverse
            protein, shows altered DNA-binding properties following fusion to E2A   molecular genetic mechanisms. Curr Top Microbiol Immunol 220:67–79,
            in t(17;19) acute lymphoblastic leukemia. Genes Dev 6(9):1608–1620,   1997.
            1992.                                             171.  Hock  H,  Meade  E,  Medeiros  S,  et al:  Tel/Etv6  is  an  essential  and
        150.  Inaba T, Roberts WM, Shapiro LH, et al: Fusion of the leucine zipper   selective regulator of adult hematopoietic stem cell survival. Genes Dev
            gene HLF to the E2A gene in human acute B-lineage leukemia. Science   18(19):2336–2341, 2004.
            257(5069):531–534, 1992.                          172.  Cave H, Cacheux V, Raynaud S, et al: ETV6 is the target of chromo-
        151.  Yoshihara  T,  Inaba  T,  Shapiro  LH,  et al:  E2A-HLF-mediated  cell   some 12p deletions in t(12;21) childhood acute lymphocytic leukemia.
            transformation  requires  both  the  trans-activation  domains  of  E2A   Leukemia 11(9):1459–1464, 1997.
            and  the  leucine  zipper  dimerization  domain  of  HLF.  Mol  Cell  Biol   173.  Jousset C, Carron C, Boureux A, et al: A domain of TEL conserved
            15(6):3247–3255, 1995.                                in a subset of ETS proteins defines a specific oligomerization interface
        152.  Ito C, Kumagai M, Manabe A, et al: Hyperdiploid acute lymphoblastic   essential to the mitogenic properties of the TEL-PDGFR beta oncop-
            leukemia with 51 to 65 chromosomes: a distinct biological entity with   rotein. EMBO J 16(1):69–82, 1997.
            a  marked  propensity  to  undergo  apoptosis.  Blood  93(1):315–320,   174.  McLean TW, Ringold S, Neuberg D, et al: TEL/AML-1 dimerizes and
            1999.                                                 is associated with a favorable outcome in childhood acute lymphoblastic
        153.  Honda H, Inaba T, Suzuki T, et al: Expression of E2A-HLF chimeric   leukemia. Blood 88(11):4252–4258, 1996.
            protein induced T-cell apoptosis, B-cell maturation arrest, and devel-  175.  Takeuchi S, Seriu T, Bartram CR, et al: TEL is one of the targets for
            opment  of  acute  lymphoblastic  leukemia.  Blood  93(9):2780–2790,   deletion on 12p in many cases of childhood B-lineage acute lympho-
            1999.                                                 blastic leukemia. Leukemia 11(8):1220–1223, 1997.
   1159   1160   1161   1162   1163   1164   1165   1166   1167   1168   1169