Page 1166 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1166
1019.e6 Part VII Hematologic Malignancies
220. Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-proteasome 242. Lavau C, Du C, Thirman M, et al: Chromatin-related properties of
pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell CBP fused to MLL generate a myelodysplastic-like syndrome that
Biol 20(7):2423–2435, 2000. evolves into myeloid leukemia. EMBO J 19(17):4655–4664, 2000.
221. Salghetti SE, Kim SY, Tansey WP: Destruction of Myc by ubiquitin- 243. Forster A, Pannell R, Drynan LF, et al: Engineering de novo reciprocal
mediated proteolysis: cancer-associated and transforming mutations chromosomal translocations associated with Mll to replicate primary
stabilize Myc. EMBO J 18(3):717–726, 1999. events of human cancer. Cancer Cell 3(5):449–458, 2003.
222. Bahram F, von der Lehr N, Cetinkaya C, et al: c-Myc hot spot muta- 244. Krivtsov AV, Twomey D, Feng Z, et al: Transformation from commit-
tions in lymphomas result in inefficient ubiquitination and decreased ted progenitor to leukaemia stem cell initiated by MLL-AF9. Nature
proteasome-mediated turnover. Blood 95(6):2104–2110, 2000. 442(7104):818–822, 2006.
223. Hemann MT, Bric A, Teruya-Feldstein J, et al: Evasion of the p53 245. Armstrong SA, Staunton JE, Silverman LB, et al: MLL translocations
tumour surveillance network by tumour-derived MYC mutants. Nature specify a distinct gene expression profile that distinguishes a unique
436(7052):807–811, 2005. leukemia. Nat Genet 30(1):41–47, 2002.
224. Ziemin-van der Poel S, McCabe NR, Gill HJ, et al: Identification of a 246. Yeoh EJ, Ross ME, Shurtleff SA, et al: Classification, subtype discovery,
gene, MLL, that spans the breakpoint in 11q23 translocations associated and prediction of outcome in pediatric acute lymphoblastic leukemia
with human leukemias. Proc Natl Acad Sci USA 88(23):10735–10739, by gene expression profiling. Cancer Cell 1(2):133–143, 2002.
1991. 247. Ferrando AA, Armstrong SA, Neuberg DS, et al: Gene expression sig-
225. Tkachuk DC, Kohler S, Cleary ML: Involvement of a homolog of natures in MLL-rearranged T-lineage and B-precursor acute leukemias:
Drosophila trithorax by 11q23 chromosomal translocations in acute dominance of HOX dysregulation. Blood 102(1):262–268, 2003.
leukemias. Cell 71(4):691–700, 1992. 248. Ayton PM, Cleary ML: Transformation of myeloid progenitors by
226. Gu Y, Nakamura T, Alder H, et al: The t(4;11) chromosome trans- MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev
location of human acute leukemias fuses the ALL-1 gene, related 17(18):2298–2307, 2003.
to Drosophila trithorax, to the AF-4 gene. Cell 71(4):701–708, 249. Kumar AR, Hudson WA, Chen W, et al: Hoxa9 influences the phe-
1992. notype but not the incidence of Mll-AF9 fusion gene leukemia. Blood
227. Djabali M, Selleri L, Parry P, et al: A trithorax-like gene is interrupted 103(5):1823–1828, 2004.
by chromosome 11q23 translocations in acute leukaemias. Nat Genet 250. Stam RW, den Boer ML, Schneider P, et al: Targeting FLT3 in primary
2(2):113–118, 1992. MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood
228. Muntean AG, Hess JL: The pathogenesis of mixed-lineage leukemia. 106(7):2484–2490, 2005.
Annu Rev Pathol 7:283–301, 2012. 251. Taketani T, Taki T, Sugita K, et al: FLT3 mutations in the activation
229. Jude CD, Climer L, Xu D, et al: Unique and independent roles for loop of tyrosine kinase domain are frequently found in infant ALL
MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood
1(3):324–337, 2007. 103(3):1085–1088, 2004.
230. Ernst P, Fisher JK, Avery W, et al: Definitive hematopoiesis requires the 252. Mohan M, Lin C, Guest E, et al: Licensed to elongate: a molecu-
mixed-lineage leukemia gene. Dev Cell 6(3):437–443, 2004. lar mechanism for MLL-based leukaemogenesis. Nat Rev Cancer
231. Ernst P, Mabon M, Davidson AJ, et al: An Mll-dependent Hox 10(10):721–728, 2010.
program drives hematopoietic progenitor expansion. Curr Biol 253. Bitoun E, Oliver PL, Davies KE: The mixed-lineage leukemia fusion
14(22):2063–2069, 2004. partner AF4 stimulates RNA polymerase II transcriptional elongation
232. Nakamura T, Mori T, Tada S, et al: ALL-1 is a histone methyltransferase and mediates coordinated chromatin remodeling. Hum Mol Genet
that assembles a supercomplex of proteins involved in transcriptional 16(1):92–106, 2007.
regulation. Mol Cell 10(5):1119–1128, 2002. 254. Mohan M, Herz HM, Takahashi YH, et al: Linking H3K79 trimeth-
233. Hsieh JJ, Cheng EH, Korsmeyer SJ: Taspase1: a threonine aspartase ylation to Wnt signaling through a novel Dot1-containing complex
required for cleavage of MLL and proper HOX gene expression. Cell (DotCom). Genes Dev 24(6):574–589, 2010.
115(3):293–303, 2003. 255. Mueller D, Garcia-Cuellar MP, Bach C, et al: Misguided transcriptional
234. Yokoyama A, Kitabayashi I, Ayton PM, et al: Leukemia proto- elongation causes mixed lineage leukemia. PLoS Biol 7(11):e1000249,
oncoprotein MLL is proteolytically processed into 2 fragments with 2009.
opposite transcriptional properties. Blood 100:3710–3718, 2002. 256. Mueller D, Bach C, Zeisig D, et al: A role for the MLL fusion partner
235. Hsieh JJ, Ernst P, Erdjument-Bromage H, et al: Proteolytic cleavage ENL in transcriptional elongation and chromatin modification. Blood
of MLL generates a complex of N- and C-terminal fragments that 110(13):4445–4454, 2007.
confers protein stability and subnuclear localization. Mol Cell Biol 257. Okada Y, Feng Q, Lin Y, et al: hDOT1L links histone methylation to
23(1):186–194, 2003. leukemogenesis. Cell 121(2):167–178, 2005.
236. Somervaille TC, Cleary ML: Grist for the MLL: how do MLL 258. Zhang W, Xia X, Reisenauer MR, et al: Dot1a-AF9 complex mediates
oncogenic fusion proteins generate leukemia stem cells? Int J Hematol histone H3 Lys-79 hypermethylation and repression of ENaCalpha in
91(5):735–741, 2010. an aldosterone-sensitive manner. J Biol Chem 281(26):18059–18068,
237. Thirman MJ, Levitan DA, Kobayashi H, et al: Cloning of ELL, a gene 2006.
that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. 259. Lin C, Smith ER, Takahashi H, et al: AFF4, a component of the ELL/P-
Proc Natl Acad Sci USA 91(25):12110–12114, 1994. TEFb elongation complex and a shared subunit of MLL chimeras, can
238. Mitani K, Kanda Y, Ogawa S, et al: Cloning of several species of MLL/ link transcription elongation to leukemia. Mol Cell 37(3):429–437,
MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) 2010.
translocation. Blood 85(8):2017–2024, 1995. 260. Yokoyama A, Lin M, Naresh A, et al: A higher-order complex containing
239. Corral J, Lavenir I, Impey H, et al: An Mll-AF9 fusion gene made AF4 and ENL family proteins with P-TEFb facilitates oncogenic and
by homologous recombination causes acute leukemia in chimeric physiologic MLL-dependent transcription. Cancer Cell 17(2):198–212,
mice: a method to create fusion oncogenes. Cell 85(6):853–861, 2010.
1996. 261. Muntean AG, Tan J, Sitwala K, et al: The PAF complex synergizes with
240. Zeisig BB, Garcia-Cuellar MP, Winkler TH, et al: The oncoprotein MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer
MLL-ENL disturbs hematopoietic lineage determination and transforms Cell 17(6):609–621, 2010.
a biphenotypic lymphoid/myeloid cell. Oncogene 22(11):1629–1637, 262. Guenther MG, Lawton LN, Rozovskaia T, et al: Aberrant chromatin at
2003. genes encoding stem cell regulators in human mixed-lineage leukemia.
241. Lavau C, Luo RT, Du C, et al: Retrovirus-mediated gene transfer of Genes Dev 22(24):3403–3408, 2008.
MLL-ELL transforms primary myeloid progenitors and causes acute 263. Krivtsov AV, Feng Z, Lemieux ME, et al: H3K79 methylation
myeloid leukemias in mice. Proc Natl Acad Sci USA 97(20):10984– profiles define murine and human MLL-AF4 leukemias. Cancer Cell
10989, 2000. 14(5):355–368, 2008.

