Page 1166 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1166

1019.e6  Part VII  Hematologic Malignancies


        220.  Gregory MA, Hann SR: c-Myc proteolysis by the ubiquitin-proteasome   242.  Lavau  C, Du  C, Thirman  M, et al: Chromatin-related  properties of
            pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell   CBP  fused  to  MLL  generate  a  myelodysplastic-like  syndrome  that
            Biol 20(7):2423–2435, 2000.                           evolves into myeloid leukemia. EMBO J 19(17):4655–4664, 2000.
        221.  Salghetti SE, Kim SY, Tansey WP: Destruction of Myc by ubiquitin-  243.  Forster A, Pannell R, Drynan LF, et al: Engineering de novo reciprocal
            mediated  proteolysis:  cancer-associated  and  transforming  mutations   chromosomal translocations associated with Mll to replicate primary
            stabilize Myc. EMBO J 18(3):717–726, 1999.            events of human cancer. Cancer Cell 3(5):449–458, 2003.
        222.  Bahram F, von der Lehr N, Cetinkaya C, et al: c-Myc hot spot muta-  244.  Krivtsov AV, Twomey D, Feng Z, et al: Transformation from commit-
            tions in lymphomas result in inefficient ubiquitination and decreased   ted progenitor to leukaemia stem cell initiated by MLL-AF9. Nature
            proteasome-mediated turnover. Blood 95(6):2104–2110, 2000.  442(7104):818–822, 2006.
        223.  Hemann  MT,  Bric  A,  Teruya-Feldstein  J,  et al:  Evasion  of  the  p53   245.  Armstrong SA, Staunton JE, Silverman LB, et al: MLL translocations
            tumour surveillance network by tumour-derived MYC mutants. Nature   specify  a  distinct  gene  expression  profile  that  distinguishes  a  unique
            436(7052):807–811, 2005.                              leukemia. Nat Genet 30(1):41–47, 2002.
        224.  Ziemin-van der Poel S, McCabe NR, Gill HJ, et al: Identification of a   246.  Yeoh EJ, Ross ME, Shurtleff SA, et al: Classification, subtype discovery,
            gene, MLL, that spans the breakpoint in 11q23 translocations associated   and prediction of outcome in pediatric acute lymphoblastic leukemia
            with human leukemias. Proc Natl Acad Sci USA 88(23):10735–10739,   by gene expression profiling. Cancer Cell 1(2):133–143, 2002.
            1991.                                             247.  Ferrando AA, Armstrong SA, Neuberg DS, et al: Gene expression sig-
        225.  Tkachuk  DC,  Kohler  S,  Cleary  ML:  Involvement  of  a  homolog  of   natures in MLL-rearranged T-lineage and B-precursor acute leukemias:
            Drosophila  trithorax  by  11q23  chromosomal  translocations  in  acute   dominance of HOX dysregulation. Blood 102(1):262–268, 2003.
            leukemias. Cell 71(4):691–700, 1992.              248.  Ayton  PM,  Cleary  ML:  Transformation  of  myeloid  progenitors  by
        226.  Gu Y,  Nakamura T,  Alder  H,  et al: The  t(4;11)  chromosome  trans-  MLL  oncoproteins  is  dependent  on  Hoxa7  and  Hoxa9.  Genes  Dev
            location  of  human  acute  leukemias  fuses  the  ALL-1  gene,  related   17(18):2298–2307, 2003.
            to  Drosophila  trithorax,  to  the  AF-4  gene.  Cell  71(4):701–708,   249.  Kumar AR, Hudson WA, Chen W, et al: Hoxa9 influences the phe-
            1992.                                                 notype but not the incidence of Mll-AF9 fusion gene leukemia. Blood
        227.  Djabali M, Selleri L, Parry P, et al: A trithorax-like gene is interrupted   103(5):1823–1828, 2004.
            by chromosome 11q23 translocations in acute leukaemias. Nat Genet   250.  Stam RW, den Boer ML, Schneider P, et al: Targeting FLT3 in primary
            2(2):113–118, 1992.                                   MLL-gene-rearranged  infant  acute  lymphoblastic  leukemia.  Blood
        228.  Muntean AG, Hess JL: The pathogenesis of mixed-lineage leukemia.   106(7):2484–2490, 2005.
            Annu Rev Pathol 7:283–301, 2012.                  251.  Taketani T, Taki T, Sugita K, et al: FLT3 mutations in the activation
        229.  Jude CD, Climer L, Xu D, et al: Unique and independent roles for   loop  of  tyrosine  kinase  domain  are  frequently  found  in  infant  ALL
            MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell   with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood
            1(3):324–337, 2007.                                   103(3):1085–1088, 2004.
        230.  Ernst P, Fisher JK, Avery W, et al: Definitive hematopoiesis requires the   252.  Mohan  M,  Lin  C,  Guest  E,  et al:  Licensed  to  elongate:  a  molecu-
            mixed-lineage leukemia gene. Dev Cell 6(3):437–443, 2004.  lar  mechanism  for  MLL-based  leukaemogenesis.  Nat  Rev  Cancer
        231.  Ernst  P,  Mabon  M,  Davidson  AJ,  et al:  An  Mll-dependent  Hox   10(10):721–728, 2010.
            program  drives  hematopoietic  progenitor  expansion.  Curr  Biol   253.  Bitoun E, Oliver PL, Davies KE: The mixed-lineage leukemia fusion
            14(22):2063–2069, 2004.                               partner AF4 stimulates RNA polymerase II transcriptional elongation
        232.  Nakamura T, Mori T, Tada S, et al: ALL-1 is a histone methyltransferase   and  mediates  coordinated  chromatin  remodeling.  Hum  Mol  Genet
            that assembles a supercomplex of proteins involved in transcriptional   16(1):92–106, 2007.
            regulation. Mol Cell 10(5):1119–1128, 2002.       254.  Mohan M, Herz HM, Takahashi YH, et al: Linking H3K79 trimeth-
        233.  Hsieh JJ, Cheng EH, Korsmeyer SJ: Taspase1: a threonine aspartase   ylation  to  Wnt  signaling  through  a  novel  Dot1-containing  complex
            required for cleavage of MLL and proper HOX gene expression. Cell   (DotCom). Genes Dev 24(6):574–589, 2010.
            115(3):293–303, 2003.                             255.  Mueller D, Garcia-Cuellar MP, Bach C, et al: Misguided transcriptional
        234.  Yokoyama  A,  Kitabayashi  I,  Ayton  PM,  et al:  Leukemia  proto-  elongation causes mixed lineage leukemia. PLoS Biol 7(11):e1000249,
            oncoprotein  MLL  is  proteolytically  processed  into  2  fragments  with   2009.
            opposite transcriptional properties. Blood 100:3710–3718, 2002.  256.  Mueller D, Bach C, Zeisig D, et al: A role for the MLL fusion partner
        235.  Hsieh  JJ,  Ernst  P,  Erdjument-Bromage  H,  et al:  Proteolytic  cleavage   ENL in transcriptional elongation and chromatin modification. Blood
            of  MLL  generates  a  complex  of  N-  and  C-terminal  fragments  that   110(13):4445–4454, 2007.
            confers  protein  stability  and  subnuclear  localization.  Mol  Cell  Biol   257.  Okada Y, Feng Q, Lin Y, et al: hDOT1L links histone methylation to
            23(1):186–194, 2003.                                  leukemogenesis. Cell 121(2):167–178, 2005.
        236.  Somervaille  TC,  Cleary  ML:  Grist  for  the  MLL:  how  do  MLL   258.  Zhang W, Xia X, Reisenauer MR, et al: Dot1a-AF9 complex mediates
            oncogenic fusion proteins generate leukemia stem cells? Int J Hematol   histone H3 Lys-79 hypermethylation and repression of ENaCalpha in
            91(5):735–741, 2010.                                  an aldosterone-sensitive manner. J Biol Chem 281(26):18059–18068,
        237.  Thirman MJ, Levitan DA, Kobayashi H, et al: Cloning of ELL, a gene   2006.
            that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia.   259.  Lin C, Smith ER, Takahashi H, et al: AFF4, a component of the ELL/P-
            Proc Natl Acad Sci USA 91(25):12110–12114, 1994.      TEFb elongation complex and a shared subunit of MLL chimeras, can
        238.  Mitani K, Kanda Y, Ogawa S, et al: Cloning of several species of MLL/  link  transcription  elongation  to  leukemia.  Mol  Cell  37(3):429–437,
            MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1)   2010.
            translocation. Blood 85(8):2017–2024, 1995.       260.  Yokoyama A, Lin M, Naresh A, et al: A higher-order complex containing
        239.  Corral  J,  Lavenir  I,  Impey  H,  et al:  An  Mll-AF9  fusion  gene  made   AF4 and ENL family proteins with P-TEFb facilitates oncogenic and
            by  homologous  recombination  causes  acute  leukemia  in  chimeric   physiologic MLL-dependent transcription. Cancer Cell 17(2):198–212,
            mice:  a  method  to  create  fusion  oncogenes.  Cell  85(6):853–861,   2010.
            1996.                                             261.  Muntean AG, Tan J, Sitwala K, et al: The PAF complex synergizes with
        240.  Zeisig  BB,  Garcia-Cuellar  MP,  Winkler TH,  et al: The  oncoprotein   MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer
            MLL-ENL disturbs hematopoietic lineage determination and transforms   Cell 17(6):609–621, 2010.
            a biphenotypic lymphoid/myeloid cell. Oncogene 22(11):1629–1637,   262.  Guenther MG, Lawton LN, Rozovskaia T, et al: Aberrant chromatin at
            2003.                                                 genes encoding stem cell regulators in human mixed-lineage leukemia.
        241.  Lavau C, Luo RT, Du C, et al: Retrovirus-mediated gene transfer of   Genes Dev 22(24):3403–3408, 2008.
            MLL-ELL  transforms  primary  myeloid  progenitors  and  causes  acute   263.  Krivtsov  AV,  Feng  Z,  Lemieux  ME,  et al:  H3K79  methylation
            myeloid  leukemias  in  mice.  Proc  Natl  Acad  Sci  USA  97(20):10984–  profiles define murine and human MLL-AF4 leukemias. Cancer Cell
            10989, 2000.                                          14(5):355–368, 2008.
   1161   1162   1163   1164   1165   1166   1167   1168   1169   1170   1171