Page 1182 - Williams Hematology ( PDFDrive )
P. 1182
1156 Part IX: Lymphocytes and Plasma Cells Chapter 74: Lymphopoiesis 1157
57. Yang L, Bryder D, Adolfsson J, et al: Identification of Lin(–)Sca1(+)kit(+)CD34(+) 93. Russell SM, Johnston JA, Noguchi M, et al: Interaction of IL-2R beta and gamma c
Flt3-short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 266:1042, 1994.
myeloablated transplant recipients. Blood 105:2717, 2005. 94. Candeias S, Muegge K, Durum SK: IL-7 receptor and VDJ recombination: Trophic ver-
58. Luc S, Buza-Vidas N, Jacobsen SE: Biological and molecular evidence for existence of sus mechanistic actions. Immunity 6:501, 1997.
lymphoid-primed multipotent progenitors. Ann N Y Acad Sci 1106:89, 2007. 95. Macchi P, Villa A, Giliani S, et al: Mutations of Jak-3 gene in patients with autosomal
59. Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC: All hematopoietic cells develop severe combined immune deficiency (SCID). Nature 377:65, 1995.
from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem 96. Russell SM, Tayebi N, Nakajima H, et al: Mutation of Jak3 in a patient with SCID:
Cell 9:64, 2011. Essential role of Jak3 in lymphoid development. Science 270:797, 1995.
60. Schlenner SM, Madan V, Busch K, et al: Fate mapping reveals separate origins of T cells 97. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(–) B(+)
and myeloid lineages in the thymus. Immunity 32:426, 2010. NK(+) severe combined immunodeficiency. Nat Genet 20:394, 1998.
61. Wu L, Liu YJ: Development of dendritic-cell lineages. Immunity 26:741, 2007. 98. Giliani S, Mori L, de Saint Basile G, et al: Interleukin-7 receptor alpha (IL-7Ralpha)
62. Wu L, Vandenabeele S, Georgopoulos K: Derivation of dendritic cells from myeloid and deficiency: Cellular and molecular bases. Analysis of clinical, immunological, and
lymphoid precursors. Int Rev Immunol 20:117, 2001. molecular features in 16 novel patients. Immunol Rev 203:110, 2005.
63. Manz MG, Traver D, Miyamoto T, et al: Dendritic cell potentials of early lymphoid and 99. Kennedy MK, Glaccum M, Brown SN, et al: Reversible defects in natural killer and
myeloid progenitors. Blood 97:3333, 2001. memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771, 2000.
64. Civin CI, Gore SD: Antigenic analysis of hematopoiesis: A review. J Hematother 2:137, 100. Lodolce JP, Boone DL, Chai S, et al: IL-15 receptor maintains lymphoid homeostasis by
1993. supporting lymphocyte homing and proliferation. Immunity 9:669, 1998.
65. Blom B, Spits H: Development of human lymphoid cells. Annu Rev Immunol 24:287, 101. Suzuki H, Kündig TM, Furlonger C, et al: Deregulated T cell activation and autoimmu-
2006. nity in mice lacking interleukin-2 receptor beta. Science 268:1472, 1995.
66. Six EM, Bonhomme D, Monteiro M, et al: A human postnatal lymphoid progenitor 102. Eidenschenk C, Jouanguy E, Alcaïs A, et al: Familial NK cell deficiency associated with
capable of circulating and seeding the thymus. J Exp Med 204:3085, 2007. impaired IL-2– and IL-15–dependent survival of lymphocytes. J Immunol 177:8835,
67. Canque B, Camus S, Dalloul A, et al: Characterization of dendritic cell differentiation 2006.
pathways from cord blood CD34(+)CD7(+)CD45RA(+) hematopoietic progenitor 103. Kohn LA, Seet CS, Scholes J, et al: Human lymphoid development in the absence of
cells. Blood 96:3748, 2000. common γ-chain receptor signaling. J Immunol 192:5050, 2014.
68. Storms RW, Goodell MA, Fisher A, et al: Hoechst dye efflux reveals a novel CD7 (+) 104. Weinberg K, Parkman R: Severe combined immunodeficiency due to a specific defect
CD34(–) lymphoid progenitor in human umbilical cord blood. Blood 96:2125, 2000. in the production of interleukin-2. N Engl J Med 322:1718, 1990.
69. Hao QL, Shah AJ, Thiemann FT, et al: A functional comparison of CD34+ CD38– cells 105. Gilmour KC, Fujii H, Cranston T, et al: Defective expression of the interleukin-2/inter-
in cord blood and bone marrow. Blood 86:3745, 1995. leukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe
70. Kohn LA, Hao QL, Sasidharan R, et al: Lymphoid priming in human bone marrow begins combined immunodeficiency. Blood 98:877, 2001.
before expression of CD10 with upregulation of L-selectin. Nat Immunol 13:963, 2012. 106. Warren LA, Rothenberg EV: Regulatory coding of lymphoid lineage choice by hemato-
71. Doulatov S, Notta F, Eppert K, et al: Revised map of the human progenitor hierarchy poietic transcription factors. Curr Opin Immunol 15:166, 2003.
shows the origin of macrophages and dendritic cells in early lymphoid development. 107. Akashi K, He X, Chen J, et al: Transcriptional accessibility for genes of multiple tissues
Nat Immunol 11:585, 2010. and hematopoietic lineages is hierarchically controlled during early hematopoiesis.
72. Bjorck P, Kincade PW: CD19+ pro-B cells can give rise to dendritic cells in vitro. J Blood 101:383, 2003.
Immunol 161:5795, 1998. 108. Miyamoto T, Iwasaki H, Reizis B, et al: Myeloid or lymphoid promiscuity as a critical
73. Allman D, Sambandam A, Kim S, et al: Thymopoiesis independent of common lym- step in hematopoietic lineage commitment. Dev Cell 3:137, 2002.
phoid progenitors. Nat Immunol 4:168, 2003. 109. Georgopoulos K, Bigby M, Wang JH, et al: The Ikaros gene is required for the develop-
74. Hao QL, George AA, Zhu J, et al: Human intrathymic lineage commitment is marked ment of all lymphoid lineages. Cell 79:143, 1994.
by differential CD7 expression: Identification of CD7– lympho-myeloid thymic pro- 110. Wang JH, Nichogiannopoulou A, Wu L, et al: Selective defects in the development of
genitors. Blood 111:1318, 2008. the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity
75. Weerkamp F, Baert MR, Brugman MH, et al: Human thymus contains multipotent progen- 5:537, 1996.
itors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107: 3131, 2006. 111. Georgopoulos K, Winandy S, Avitahl N: The role of the Ikaros gene in lymphocyte
76. Bhandoola A, Sambandam A, Allman D, et al: Early T lineage progenitors: New development and homeostasis. Annu Rev Immunol 15:155, 1997.
insights, but old questions remain. J Immunol 171:5653, 2003. 112. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K: Early hematopoietic lineage
77. Ramond C, Berthault C, Burlen-Defranoux O, et al: Two waves of distinct hematopoi- restrictions directed by Ikaros. Nat Immunol 7:382, 2006.
etic progenitor cells colonize the fetal thymus. Nat Immunol 15:27, 2014. 113. Nichogiannopoulou A, Trevisan M, Neben S, et al: Defects in hemopoietic stem cell
78. Rawlings DJ, Quan S, Hao QL, et al: Differentiation of human CD34+CD38– cord activity in Ikaros mutant mice. J Exp Med 190:1201, 1999.
blood stem cells into B cell progenitors in vitro. Exp Hematol 25:66, 1997. 114. Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K: Cell-autonomous defects
79. Berardi AC, Meffre E, Pflumio F, et al: Individual CD34+CD38lowCD19–CD10– pro- in dendritic cell populations of Ikaros mutant mice point to a developmental relation-
genitor cells from human cord blood generate B lymphocytes and granulocytes. Blood ship with the lymphoid lineage. Immunity 7:483, 1997.
89:3554, 1997. 115. Klug CA, Morrison SJ, Masek M, et al: Hematopoietic stem cells and lymphoid progen-
80. Miller JS, McCullar V, Punzel M, et al: Single adult human CD34(+)/Lin–/CD38(–) itors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in
progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid immature lymphocytes. Proc Natl Acad Sci U S A 95:657, 1998.
cells. Blood 93:96, 1999. 116. Payne KJ, Huang G, Sahakian E, et al: Ikaros isoform x is selectively expressed in mye-
81. Plum J, De Smedt M, Verhasselt B, et al: Human T lymphopoiesis. In vitro and in vivo loid differentiation. J Immunol 170:3091, 2003.
study models. Ann N Y Acad Sci 917:724, 2000. 117. Payne KJ, Nicolas JH, Zhu JY, et al: Cutting edge: Predominant expression of a novel
82. Awong G, Herer E, Surh CD, et al: Characterization in vitro and engraftment potential Ikaros isoform in normal human hemopoiesis. J Immunol 167:1867, 2001.
in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 118. Cobb BS, Smale ST: Ikaros-family proteins: In search of molecular functions during
114:972, 2009. lymphocyte development. Curr Top Microbiol Immunol 290:29, 2005.
83. Noguchi M, Yi H, Rosenblatt HM, et al: Interleukin-2 receptor gamma chain mutation 119. DeKoter RP, Walsh JC, Singh H: PU.1 regulates both cytokine-dependent proliferation
results in X-linked severe combined immunodeficiency in humans. Cell 73:147, 1993. and differentiation of granulocyte/macrophage progenitors. EMBO J 17:4456, 1998.
84. Kondo M, Takeshita T, Ishii N, et al: Sharing of the interleukin-2 (IL-2) receptor gamma 120. DeKoter RP, Lee HJ, Singh H: PU.1 regulates expression of the interleukin-7 receptor in
chain between receptors for IL-2 and IL-4. Science 262:1874, 1993. lymphoid progenitors. Immunity 16:297, 2002.
85. Russell SM, Keegan AD, Harada N, et al: Interleukin-2 receptor gamma chain: A func- 121. Medina KL, Ponqubala JM, Reddy KL, et al: Assembling a gene regulatory network for
tional component of the interleukin-4 receptor. Science 262:1880, 1993. specification of the B cell fate. Dev Cell 7:607, 2004.
86. Noguchi M, Nakamura Y, Russell SM, et al: Interleukin-2 receptor gamma chain: A 122. Polli M, Dakic A, Light A, et al: The development of functional B lymphocytes in con-
functional component of the interleukin-7 receptor. Science 262:1877, 1993. ditional PU.1 knock-out mice. Blood 106:2083, 2005.
87. Kondo M, Takeshita T, Higuchi M, et al: Functional participation of the IL-2 receptor 123. Murre C: Helix-loop-helix proteins and lymphocyte development. Nat Immunol 6:1079,
gamma chain in IL-7 receptor complexes. Science 263:1453, 1994. 2005.
88. Kimura Y, Takeshita T, Kondo M, et al: Sharing of the IL-2 receptor gamma chain with 124. Dias S, Månsson R, Gurbuxani S, et al: E2A proteins promote development of lym-
the functional IL-9 receptor complex. Int Immunol 7:115, 1995. phoid-primed multipotent progenitors. Immunity 29:217, 2008.
89. Giri JG, Ahdieh M, Eisenman J, et al: Utilization of the beta and gamma chains of the 125. Bain G, Engel I, Robanus Maandag EC, et al: E2A deficiency leads to abnormalities in
IL-2 receptor by the novel cytokine IL-15. EMBO J 13:2822, 1994. alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell
90. Asao H, Okuyama C, Kumaki S, et al: Cutting edge: The common gamma-chain is an Biol 17: 4782, 1997.
indispensable subunit of the IL-21 receptor complex. J Immunol 167:1, 2001. 126. Bain G, Robanus Maandag EC, te Riele HP, et al: Both E12 and E47 allow commitment
91. Kang J, Der SD: Cytokine functions in the formative stages of a lymphocyte’s life. Curr to the B cell lineage. Immunity 6:145, 1997.
Opin Immunol 16:180, 2004. 127. Kee BL, Murre C: Induction of early B cell factor (EBF) and multiple B lineage genes by
92. Di Santo JP, Kuhn R, Muller W: Common cytokine receptor gamma chain (gamma the basic helix-loop-helix transcription factor E12. J Exp Med 188:699, 1998.
c)-dependent cytokines: Understanding in vivo functions by gene targeting. Immunol 128. Ikawa T, Kawamoto H, Goldrath AW, Murre C: E proteins and Notch signaling cooper-
Rev 148:19, 1995. ate to promote T cell lineage specification and commitment. J Exp Med 203:1329, 2006.
Kaushansky_chapter 74_p1149-p1158.indd 1157 9/18/15 2:26 PM

