Page 1182 - Williams Hematology ( PDFDrive )
P. 1182

1156  Part IX:  Lymphocytes and Plasma Cells                                    Chapter 74:  Lymphopoiesis           1157




                    57.  Yang L, Bryder D, Adolfsson J, et al: Identification of Lin(–)Sca1(+)kit(+)CD34(+)    93.  Russell SM, Johnston JA, Noguchi M, et al: Interaction of IL-2R beta and gamma c
                     Flt3-short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing   chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 266:1042, 1994.
                     myeloablated transplant recipients. Blood 105:2717, 2005.    94.  Candeias S, Muegge K, Durum SK: IL-7 receptor and VDJ recombination: Trophic ver-
                    58.  Luc S, Buza-Vidas N, Jacobsen SE: Biological and molecular evidence for existence of   sus mechanistic actions. Immunity 6:501, 1997.
                     lymphoid-primed multipotent progenitors. Ann N Y Acad Sci 1106:89, 2007.    95.  Macchi P, Villa A, Giliani S, et al: Mutations of Jak-3 gene in patients with autosomal
                    59.  Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC: All hematopoietic cells develop   severe combined immune deficiency (SCID). Nature 377:65, 1995.
                     from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem     96.  Russell SM, Tayebi N, Nakajima H, et al: Mutation of Jak3 in a patient with SCID:
                     Cell 9:64, 2011.                                      Essential role of Jak3 in lymphoid development. Science 270:797, 1995.
                    60.  Schlenner SM, Madan V, Busch K, et al: Fate mapping reveals separate origins of T cells     97.  Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(–) B(+)
                     and myeloid lineages in the thymus. Immunity 32:426, 2010.  NK(+) severe combined immunodeficiency. Nat Genet 20:394, 1998.
                    61.  Wu L, Liu YJ: Development of dendritic-cell lineages. Immunity 26:741, 2007.    98.  Giliani S, Mori L, de Saint Basile G, et al: Interleukin-7 receptor alpha (IL-7Ralpha)
                    62.  Wu L, Vandenabeele S, Georgopoulos K: Derivation of dendritic cells from myeloid and   deficiency: Cellular and molecular bases. Analysis of clinical, immunological, and
                     lymphoid precursors. Int Rev Immunol 20:117, 2001.    molecular features in 16 novel patients. Immunol Rev 203:110, 2005.
                    63.  Manz MG, Traver D, Miyamoto T, et al: Dendritic cell potentials of early lymphoid and     99.  Kennedy MK, Glaccum M, Brown SN, et al: Reversible defects in natural killer and
                     myeloid progenitors. Blood 97:3333, 2001.             memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771, 2000.
                    64.  Civin CI, Gore SD: Antigenic analysis of hematopoiesis: A review. J Hematother 2:137,     100. Lodolce JP, Boone DL, Chai S, et al: IL-15 receptor maintains lymphoid homeostasis by
                     1993.                                                 supporting lymphocyte homing and proliferation. Immunity 9:669, 1998.
                    65.  Blom B, Spits H: Development of human lymphoid cells. Annu Rev Immunol 24:287,     101. Suzuki H, Kündig TM, Furlonger C, et al: Deregulated T cell activation and autoimmu-
                     2006.                                                 nity in mice lacking interleukin-2 receptor beta. Science 268:1472, 1995.
                    66.  Six EM, Bonhomme D, Monteiro M, et al: A human postnatal lymphoid progenitor     102. Eidenschenk C, Jouanguy E, Alcaïs A, et al: Familial NK cell deficiency associated with
                     capable of circulating and seeding the thymus. J Exp Med 204:3085, 2007.  impaired IL-2– and IL-15–dependent survival of lymphocytes. J Immunol 177:8835,
                    67.  Canque B, Camus S, Dalloul A, et al: Characterization of dendritic cell differentiation   2006.
                     pathways from cord blood CD34(+)CD7(+)CD45RA(+) hematopoietic progenitor     103. Kohn LA, Seet CS, Scholes J, et al: Human lymphoid development in the absence of
                     cells. Blood 96:3748, 2000.                           common γ-chain receptor signaling. J Immunol 192:5050, 2014.
                    68.  Storms RW, Goodell MA, Fisher A, et al: Hoechst dye efflux reveals a novel CD7 (+)    104. Weinberg K, Parkman R: Severe combined immunodeficiency due to a specific defect
                     CD34(–) lymphoid progenitor in human umbilical cord blood. Blood 96:2125, 2000.  in the production of interleukin-2. N Engl J Med 322:1718, 1990.
                    69.  Hao QL, Shah AJ, Thiemann FT, et al: A functional comparison of CD34+ CD38– cells     105. Gilmour KC, Fujii H, Cranston T, et al: Defective expression of the interleukin-2/inter-
                     in cord blood and bone marrow. Blood 86:3745, 1995.   leukin-15 receptor beta subunit leads to a natural killer cell-deficient form of severe
                    70.  Kohn LA, Hao QL, Sasidharan R, et al: Lymphoid priming in human bone marrow begins   combined immunodeficiency. Blood 98:877, 2001.
                     before expression of CD10 with upregulation of L-selectin. Nat Immunol 13:963, 2012.    106. Warren LA, Rothenberg EV: Regulatory coding of lymphoid lineage choice by hemato-
                    71.  Doulatov S, Notta F, Eppert K, et al: Revised map of the human progenitor hierarchy   poietic transcription factors. Curr Opin Immunol 15:166, 2003.
                     shows the origin of macrophages and dendritic cells in early lymphoid development.     107. Akashi K, He X, Chen J, et al: Transcriptional accessibility for genes of multiple tissues
                     Nat Immunol 11:585, 2010.                             and hematopoietic lineages is hierarchically controlled during early hematopoiesis.
                    72.  Bjorck P, Kincade PW: CD19+ pro-B cells can give rise to dendritic cells in vitro. J   Blood 101:383, 2003.
                     Immunol 161:5795, 1998.                              108. Miyamoto T, Iwasaki H, Reizis B, et al: Myeloid or lymphoid promiscuity as a critical
                    73.  Allman D, Sambandam A, Kim S, et al: Thymopoiesis independent of common lym-  step in hematopoietic lineage commitment. Dev Cell 3:137, 2002.
                     phoid progenitors. Nat Immunol 4:168, 2003.          109. Georgopoulos K, Bigby M, Wang JH, et al: The Ikaros gene is required for the develop-
                    74.  Hao QL, George AA, Zhu J, et al: Human intrathymic lineage commitment is marked   ment of all lymphoid lineages. Cell 79:143, 1994.
                     by differential CD7 expression: Identification of CD7– lympho-myeloid thymic pro-    110. Wang JH, Nichogiannopoulou A, Wu L, et al: Selective defects in the development of
                     genitors. Blood 111:1318, 2008.                       the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity
                    75.  Weerkamp F, Baert MR, Brugman MH, et al: Human thymus contains multipotent progen-  5:537, 1996.
                     itors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107: 3131, 2006.    111. Georgopoulos K, Winandy S, Avitahl N: The role of the Ikaros gene in lymphocyte
                    76.  Bhandoola A, Sambandam A, Allman D, et al: Early T lineage progenitors: New   development and homeostasis. Annu Rev Immunol 15:155, 1997.
                     insights, but old questions remain. J Immunol 171:5653, 2003.    112. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K: Early hematopoietic lineage
                    77.  Ramond C, Berthault C, Burlen-Defranoux O, et al: Two waves of distinct hematopoi-  restrictions directed by Ikaros. Nat Immunol 7:382, 2006.
                     etic progenitor cells colonize the fetal thymus. Nat Immunol 15:27, 2014.    113. Nichogiannopoulou A, Trevisan M, Neben S, et al: Defects in hemopoietic stem cell
                    78.  Rawlings DJ, Quan S, Hao QL, et al: Differentiation of human CD34+CD38– cord   activity in Ikaros mutant mice. J Exp Med 190:1201, 1999.
                     blood stem cells into B cell progenitors in vitro. Exp Hematol 25:66, 1997.    114. Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K: Cell-autonomous defects
                    79.  Berardi AC, Meffre E, Pflumio F, et al: Individual CD34+CD38lowCD19–CD10– pro-  in dendritic cell populations of Ikaros mutant mice point to a developmental relation-
                     genitor cells from human cord blood generate B lymphocytes and granulocytes. Blood   ship with the lymphoid lineage. Immunity 7:483, 1997.
                     89:3554, 1997.                                       115. Klug CA, Morrison SJ, Masek M, et al: Hematopoietic stem cells and lymphoid progen-
                    80.  Miller JS, McCullar V, Punzel M, et al: Single adult human CD34(+)/Lin–/CD38(–)   itors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in
                     progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid   immature lymphocytes. Proc Natl Acad Sci U S A 95:657, 1998.
                     cells. Blood 93:96, 1999.                            116. Payne KJ, Huang G, Sahakian E, et al: Ikaros isoform x is selectively expressed in mye-
                    81.  Plum J, De Smedt M, Verhasselt B, et al: Human T lymphopoiesis. In vitro and in vivo   loid differentiation. J Immunol 170:3091, 2003.
                     study models. Ann N Y Acad Sci 917:724, 2000.        117. Payne KJ, Nicolas JH, Zhu JY, et al: Cutting edge: Predominant expression of a novel
                    82.  Awong G, Herer E, Surh CD, et al: Characterization in vitro and engraftment potential   Ikaros isoform in normal human hemopoiesis. J Immunol 167:1867, 2001.
                     in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood     118. Cobb BS, Smale ST: Ikaros-family proteins: In search of molecular functions during
                     114:972, 2009.                                        lymphocyte development. Curr Top Microbiol Immunol 290:29, 2005.
                    83.  Noguchi M, Yi H, Rosenblatt HM, et al: Interleukin-2 receptor gamma chain mutation     119. DeKoter RP, Walsh JC, Singh H: PU.1 regulates both cytokine-dependent proliferation
                     results in X-linked severe combined immunodeficiency in humans. Cell 73:147, 1993.  and differentiation of granulocyte/macrophage progenitors. EMBO J 17:4456, 1998.
                    84.  Kondo M, Takeshita T, Ishii N, et al: Sharing of the interleukin-2 (IL-2) receptor gamma     120. DeKoter RP, Lee HJ, Singh H: PU.1 regulates expression of the interleukin-7 receptor in
                     chain between receptors for IL-2 and IL-4. Science 262:1874, 1993.  lymphoid progenitors. Immunity 16:297, 2002.
                    85.  Russell SM, Keegan AD, Harada N, et al: Interleukin-2 receptor gamma chain: A func-    121. Medina KL, Ponqubala JM, Reddy KL, et al: Assembling a gene regulatory network for
                     tional component of the interleukin-4 receptor. Science 262:1880, 1993.  specification of the B cell fate. Dev Cell 7:607, 2004.
                    86.  Noguchi M, Nakamura Y, Russell SM, et al: Interleukin-2 receptor gamma chain: A     122. Polli M, Dakic A, Light A, et al: The development of functional B lymphocytes in con-
                     functional component of the interleukin-7 receptor. Science 262:1877, 1993.  ditional PU.1 knock-out mice. Blood 106:2083, 2005.
                    87.  Kondo M, Takeshita T, Higuchi M, et al: Functional participation of the IL-2 receptor     123. Murre C: Helix-loop-helix proteins and lymphocyte development. Nat Immunol 6:1079,
                     gamma chain in IL-7 receptor complexes. Science 263:1453, 1994.  2005.
                    88.  Kimura Y, Takeshita T, Kondo M, et al: Sharing of the IL-2 receptor gamma chain with     124. Dias S, Månsson R, Gurbuxani S, et al: E2A proteins promote development of lym-
                     the functional IL-9 receptor complex. Int Immunol 7:115, 1995.  phoid-primed multipotent progenitors. Immunity 29:217, 2008.
                    89.  Giri JG, Ahdieh M, Eisenman J, et al: Utilization of the beta and gamma chains of the     125. Bain G, Engel I, Robanus Maandag EC, et al: E2A deficiency leads to abnormalities in
                     IL-2 receptor by the novel cytokine IL-15. EMBO J 13:2822, 1994.  alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell
                    90.  Asao H, Okuyama C, Kumaki S, et al: Cutting edge: The common gamma-chain is an   Biol 17: 4782, 1997.
                     indispensable subunit of the IL-21 receptor complex. J Immunol 167:1, 2001.    126. Bain G, Robanus Maandag EC, te Riele HP, et al: Both E12 and E47 allow commitment
                    91.  Kang J, Der SD: Cytokine functions in the formative stages of a lymphocyte’s life. Curr   to the B cell lineage. Immunity 6:145, 1997.
                     Opin Immunol 16:180, 2004.                           127. Kee BL, Murre C: Induction of early B cell factor (EBF) and multiple B lineage genes by
                    92.  Di Santo JP, Kuhn R, Muller W: Common cytokine receptor gamma chain (gamma   the basic helix-loop-helix transcription factor E12. J Exp Med 188:699, 1998.
                     c)-dependent cytokines: Understanding in vivo functions by gene targeting. Immunol     128. Ikawa T, Kawamoto H, Goldrath AW, Murre C: E proteins and Notch signaling cooper-
                     Rev 148:19, 1995.                                     ate to promote T cell lineage specification and commitment. J Exp Med 203:1329, 2006.







          Kaushansky_chapter 74_p1149-p1158.indd   1157                                                                 9/18/15   2:26 PM
   1177   1178   1179   1180   1181   1182   1183   1184   1185   1186   1187