Page 189 - Williams Hematology ( PDFDrive )
P. 189
164 Part IV: Molecular and Cellular Hematology
30. Greaves M, Maley CC: Clonal evolution in cancer. Nature 481(7381):306–313, 2012. 49. Jin F, Li Y, Dixon JR, et al: A high-resolution map of the three-dimensional chromatin
31. Landau DA, Carter SL, Stojanov P, et al: Evolution and impact of subclonal mutations interactome in human cells. Nature 503(7475):290–294, 2013.
in chronic lymphocytic leukemia. Cell 152(4):714–726, 2013. 50. Oda M, Greally JM: The HELP assay. Methods Mol Biol 507:77–87, 2009.
32. Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult 51. Krueger F, Kreck B, Franke A, Andrews SR: DNA methylome analysis using short bisul-
de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074, 2013. fite sequencing data. Nat Methods 9(2):145–151, 2012.
33. Welch JS, Ley TJ, Link DC, et al: The origin and evolution of mutations in acute myeloid 52. Booth MJ, Branco MR, Ficz G, et al: Quantitative sequencing of 5-methylcytosine and
leukemia. Cell 150(2):264–278, 2012. 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937, 2012.
34. Ding L, Ley TJ, Larson DE, et al: Clonal evolution in relapsed acute myeloid leukaemia 53. Booth MJ, Ost TW, Beraldi D, et al: Oxidative bisulfite sequencing of 5-methylcytosine
revealed by whole-genome sequencing. Nature 481(7382):506–510, 2012. and 5-hydroxymethylcytosine. Nat Protoc 8(10):1841–1851, 2013.
35. Walter MJ, Shen D, Ding L, et al: Clonal architecture of secondary acute myeloid leuke- 54. Lee EJ, Luo J, Wilson JM, Shi H: Analyzing the cancer methylome through targeted
mia. N Engl J Med 366(12):1090–1098, 2012. bisulfite sequencing. Cancer Lett 340(2):171–178, 2013.
36. Walter MJ, Shen D, Shao J, et al: Clonal diversity of recurrently mutated genes in myel- 55. Wang Q, Gu L, Adey A, et al: Tagmentation-based whole-genome bisulfite sequencing.
odysplastic syndromes. Leukemia 27(6):1275–1282, 2013. Nat Protoc 8(10):2022–2032, 2013.
37. ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the 56. McCarthy MI, Abecasis GR, Cardon LR, et al: Genome-wide association studies for
human genome. Nature 489(7414):57–74, 2012. complex traits: Consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369,
38. Mortazavi A, Williams BA, McCue K, et al: Mapping and quantifying mammalian tran- 2008.
scriptomes by RNA-Seq. Nat Methods 5(7):621–628, 2008. 57. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Sci-
39. Cabanski CR, Magrini V, Griffith M, et al: CDNA hybrid capture improves transcrip- ence 273(5281):1516–1517, 1996.
tome analysis on low-input and archived samples. J Mol Diagn 16(4):440–451, 2014. 58. Green RC, Berg JS, Grody WW, et al: ACMG recommendations for reporting of inci-
40. Trapnell C, Hendrickson DG, Sauvageau M, et al: Differential analysis of gene regula- dental findings in clinical exome and genome sequencing. Genet Med 15(7):565–574,
tion at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53, 2013. 2013.
41. Trapnell C, Roberts A, Goff L, et al: Differential gene and transcript expression analysis 59. Li L, Goedegebuure P, Mardis ER, et al: Cancer genome sequencing and its implications
of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578, 2012. for personalized cancer vaccines. Cancers (Basel) 3(4):4191–4211, 2011.
42. Park PJ: ChIP-seq: Advantages and challenges of a maturing technology. Nat Rev Genet 60. Linette GP, Carreno BM: Dendritic cell-based vaccines: Shining the spotlight on signal
10(10):669–680, 2009. 3. Oncoimmunology 2(11):e26512, 2013.
43. Bailey T, Krajewski P, Ladunga I, et al: Practical guidelines for the comprehensive anal- 61. Salipante SJ, Fromm JR, Shendure J, et al: Detection of minimal residual disease in
ysis of ChIP-seq data. PLoS Comput Biol 9(11):e1003326, 2013. NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod Pathol
44. Landt SG, Marinov GK, Kundaje A, et al: ChIP-seq guidelines and practices of the 27(11):1438–1446, 2014.
ENCODE and modENCODE consortia. Genome Res 2012;22(9):1813–1831, 2013. 62. Ladetto M, Brüggemann M, Monitillo L, et al: Next-generation sequencing and real-
45. He HH, Meyer CA, Hu SS, et al: Refined DNase-seq protocol and data analysis reveals time quantitative PCR for minimal residual disease detection in B-cell disorders. Leu-
intrinsic bias in transcription factor footprint identification. Nat Methods 11(1):73–78, kemia 28(6):1299–1307, 2014.
2014. 63. Thol F, Kölking B, Damm F, et al: Next-generation sequencing for minimal residual
46. Cui K, Zhao K: Genome-wide approaches to determining nucleosome occupancy in disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 muta-
metazoans using MNase-Seq. Methods Mol Biol 833:413–419, 2012. tions. Genes Chromosomes Cancer 51(7):689–695, 2012.
47. Buenrostro JD, Giresi PG, Zaba LC, et al: Transposition of native chromatin for fast and 64. Relling MV, Altman RB, Goetz MP, Evans WE: Clinical implementation of pharma-
sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucle- cogenomics: Overcoming genetic exceptionalism. Lancet Oncol 11(6):507–509, 2010.
osome position. Nat Methods 10(12):1213–1218, 2013.
48. Yang CC, Buck MJ, Chen MH, et al: Discovering chromatin motifs using FAIRE
sequencing and the human diploid genome. BMC Genomics 14:310, 2013.
Kaushansky_chapter 11_p0155-0164.indd 164 9/18/15 11:48 PM

