Page 1912 - Williams Hematology ( PDFDrive )
P. 1912

1886  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1887




                    58.  Prevost N, et al: Eph kinases and ephrins support thrombus growth and stability     92.  Baglia FA, et al: The glycoprotein Ib-IX-V complex mediates localization of factor XI
                     by regulating integrin outside-in signaling in platelets.  Proc Natl Acad Sci U S A   to lipid rafts on the platelet membrane. J Biol Chem 278(24):21744–21750, 2003.
                     102(28):9820–9825, 2005.                             93.  Brownlow SL, et al: A role for hTRPC1 and lipid raft domains in store-mediated cal-
                    59.  Renne T, et al: Defective thrombus formation in mice lacking coagulation factor XII.   cium entry in human platelets. Cell Calcium 35(2):107–113, 2004.
                     J Exp Med 202(2):271–281, 2005.                      94.  Lopez JA, I. del Conde, Shrimpton CN: Receptors, rafts, and microvesicles in throm-
                    60.  Jirouskova M, et al: Antibody blockade or mutation of the fibrinogen gamma-chain   bosis and inflammation. J Thromb Haemost 3(8):1737–1744, 2005.
                     C-terminus is more effective in inhibiting murine arterial thrombus formation than     95.  White JG: Anatomy and structural organization of the platelet, in Hemostasis and
                     complete absence of fibrinogen. Blood 103(6):1995–2002, 2004.  Thrombosis: Basic Principles and Clinical Practice, edited by RW Colman, VJ Marder,
                    61.  Loscalzo J, Inbal A, Handin RI: Von Willebrand protein facilitates platelet incorpora-  EW Salzman, pp 397–413. JB Lippincott, Philadelphia, 1993.
                     tion in polymerizing fibrin. J Clin Invest 78(4):1112–1119, 1986.    96.  Behnke O: The morphology of blood platelet membrane systems.  Ser Haematol
                    62.  Deckmyn H, et al: Inhibitors of the interactions between collagen and its receptors on   3(4):3–16, 1970.
                     platelets. Handb Exp Pharmacol 2012(210):311–337.    97.  White JG: Electron microscopic studies of platelet secretion. Prog Hemost Thromb
                    63.  George JN, et al: Platelet surface glycoproteins. Studies on resting and activated platelets and   2:49, 1974.
                     platelet membrane microparticles in normal subjects, and observations in patients during     98.  Suzuki H, Yamazaki H, Tanoue K: Immunocytochemical studies on co-localization
                     adult respiratory distress syndrome and cardiac surgery. J Clin Invest 78(2):340–348, 1986.  of alpha-granule membrane alphaIIbbeta3 integrin and intragranular fibrinogen
                    64.  Michelson AD: Thrombin-induced down-regulation of the platelet membrane glyco-  of human platelets and their cell-surface expression during the thrombin-induced
                     protein Ib-IX complex. Semin Thromb Hemost 18(1):18–27, 1992.  release reaction. J Electron Microsc (Tokyo) 52(2):183–195, 1970.
                    65.  Michelson AD, Barnard MR: Thrombin-induced changes in platelet membrane glyco-    99.  Stenberg PE, Shuman MA, Levine SP, Bainton DF: Redistribution of α granules and
                     proteins Ib, IX, and IIb-IIIa complex. Blood 70(5):1673–1678, 1987.  their contents in thrombin-stimulated platelets. J Cell Biol 98:748–760, 1984.
                    66.  McEver RP: Properties of GMP-140, an inducible granule membrane protein of plate-    100.  Ginsberg MH, Taylor L, Painter RG: The mechanism of thrombin-induced platelet
                     lets and endothelium. Blood Cells 16(1):73–80; discussion 80–83, 1990.  factor 4 secretion. Blood 55:661, 1980.
                    67.  McEver RP, et al: GMP-140, a platelet alpha-granule membrane protein, is also syn-    101.  Nurden P, Heilmann E, Paponneau A, Nurden A: Two-way trafficking of membrane
                     thesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin   glycoproteins on thrombin-activated human platelets.  Semin Hematol 1994;31(3):
                     Invest 84(1):92–99, 1989.                              240–250, 1980.
                    68.  McEver R: P-selectin/PSGL-1 and other interactions between platelets, leukocytes, and     102.  Michelson AD, Barnard MR: Plasmin-induced redistribution of platelet glycoprotein
                     endothelium, in Platelets, edited by AD M, p 231. Academic Press, San Diego, 2007.  Ib. Blood 76(10):2005–2010, 1990.
                    69.  Loscalzo J: Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ     103.  Suzuki H, Nakamura S, Itoh Y, et al: Immunocytochemical evidence for the transloca-
                     Res 88(8):756–762, 2001.                               tion of α-granule membrane glycoprotein IIb/IIIa (integrin αIIbβ3) of human platelets
                    70.  Luscher TF: Platelet-vessel wall interaction: Role of nitric oxide, prostaglandins and   to the surface membrane during the release reaction. Histochemistry 97:381–388, 1992.
                     endothelins. Baillieres Clin Haematol 6(3):609–627, 1993.    104.  Suzuki H, Murasaki K, Kodama K, Takayama H: et al: Intracellular localization of
                    71.  Mitchell JA, et al: Role of nitric oxide and prostacyclin as vasoactive hormones   glycoprotein VI in human platelets and its surface expression upon activation. Br J
                     released by the endothelium. Exp Physiol 93(1):141–147, 2008.  Haematol 121(6):904–912, 2003.
                    72.  Rex S, Freedman JE: Inhibition of platelet function by the endothelium, in Platelets,     105.  Nurden P, Poujol C, Winckler J, et al: Immunolocalization of P2Y1 and TPalpha
                     edited by AD Michelson, pp 251–280. Academic Press, San Diego, 2007.  receptors in platelets showed a major pool associated with the membranes of alpha-
                    73.  Marcus AJ, et al: The endothelial cell ecto-ADPase responsible for inhibition of plate-  granules and the open canalicular system. Blood 101(4):1400–1408, 2003.
                     let function is CD39. J Clin Invest 99(6):1351–1360, 1997.    106.  Breton-Gorius, J, Guichard J: Ultrastructural localization of peroxidase activity in
                    74.  Marcus AJ, et al: Inhibition of platelet function by an aspirin-insensitive endothelial cell   human platelets and megakaryocytes. Am J Pathol 66:277, 1986.
                     ADPase. Thromboregulation by endothelial cells. J Clin Invest 88(5):1690–1696, 1991.    107.  Cramer EM: Platelets and megakaryocytes: Anatomy and structural organization,
                    75.  Holme S, et al: Light scatter and total protein signal distribution of platelets by flow   in  Hemostasis and Thrombosis: Basic Principles in Clinical Practice, edited by RW
                     cytometry as parameters of size. J Lab Clin Med 112(2):223–231, 1988.  Colman, J Hirsh, V J Marder, AW Clowes and J N George, et al, pp 411–428. Lippincott,
                    76.  White  J:  Anatomy  and  structural  organization  of  the platelet,  in  Hemostasis and   Williams & Wilkins: Philadelphia, 2001.
                     Thrombosis: Basic Principles and Clinical Practice, edited by RW Colman, VJ Marder,     108.  White JG: Interaction of membrane systems in blood platelets. Am J Pathol 66(2):
                     EW Salzman, p 397. JB Lippincott, Philadelphia, 1993.  295–312, 1972.
                    77.  Coller BS: Biochemical and electrostatic considerations in primary platelet aggrega-    109.  Menashi S, Davis C, Crawford N: Calcium uptake associated with an intracellular
                     tion. Ann N Y Acad Sci 416:693–708, 1983.              membrane fraction prepared from human blood platelets by high-voltage, free-flow
                    78.  van Joost T, et al: Purpuric contact dermatitis to benzoyl peroxide. J Am Acad Derma-  electrophoresis. FEBS Lett 140:298, 1982.
                     tol 22(2 Pt 2):359–361, 1990.                        110.  Robblee LS, Shepro D, Belamarich FA: Calcium uptake and associated adenosine tri-
                    79.  Schick P: Megakaryocyte and platelet lipids, in  Hemostasis and  Thrombosis:  Basic   phosphate activity of isolated platelet membranes. J Gen Physiol 61:462, 1973.
                     Principles and Clinical Practice, edited by RW Colman, VJ Marder, EW Salzman,      111.  Hartwig JH: Platelet morphology, in  Thrombosis and Hemorrhage, edited by J
                     p 574. JB Lippincott, Philadelphia, 1993.              Loscalzo, AI Schafer, pp 207–228. Williams & Wilkins, Baltimore, 1999.
                    80.  Heemskerk JW, Bevers EM, Lindhout T: Platelet activation and blood coagulation.     112.  Michalak M, Mariani P, Opas M: Calreticulin, a multifunctional Ca2+ binding chap-
                     Thromb Haemost 88(2):186–193, 2002.                    erone of the endoplasmic reticulum. Biochem Cell Biol 76(5):779–785, 1998.
                    81.  Solum NO: Procoagulant expression in platelets and defects leading to clinical disor-    113.  Brownlow SL, Sage SO: Rapid agonist-evoked coupling of type II Ins(1,4,5)P3 recep-
                     ders. Arterioscler Thromb Vasc Biol 19(12):2841–2846, 1999.  tor with human transient receptor potential (hTRPC1) channels in human platelets.
                    82.  Sims PJ, et al: Complement proteins C5b-9 cause release of membrane vesicles from   Biochem J 375(Pt 3):697–704, 2003.
                     the platelet surface that are enriched in the membrane receptor for coagulation factor     114.  van Gorp RM, et al: Irregular spiking in free calcium concentration in single, human
                     Va and express prothrombinase activity. J Biol Chem 263(34):18205–18212, 1988.  platelets. Regulation by modulation of the inositol trisphosphate receptors. Eur J Bio-
                    83.  Sims PJ, et al: Assembly of the platelet prothrombinase complex is linked to vesicula-  chem 269(5):1543–1552, 2002.
                     tion of the platelet plasma membrane. Studies in Scott syndrome: An isolated defect     115.  Käser-Glanzmann R, Jakábová M, George JN, Lüscher EF: Further characterization
                     in platelet procoagulant activity. J Biol Chem 264(29):17049–17057, 1989.  of calcium accumulating vesicles from human blood platelets. Biochim Biophys Acta
                    84.  Bevers EM, et al: Exposure of endogenous phosphatidylserine at the outer surface   542:357, 1978.
                     of stimulated platelets is reversed by restoration of aminophospholipid translocase     116.  Tertyshnikova S, Fein A: Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+
                     activity. Biochemistry 28(6):2382–2387, 1989.          release by cAMP- dependent protein kinase in a living cell. Proc Natl Acad Sci U S A
                    85.  Comfurius P, Bevers EM, Zwaal RF: The involvement of cytoskeleton in the regulation   1998;95(4):1613–1617, 1978.
                     of transbilayer movement of phospholipids in human blood platelets. Biochim Biophys     117.  Pernollet MG, Lantoine F, Devynck MA: Nitric oxide inhibits ATP-dependent Ca
                                                                                                                           2+
                     Acta 815(1):143–148, 1985.                             uptake into platelet membrane vesicles.  Biochem  Biophys Res Commun 222(3):
                    86.  Tuszynski GP, et al: The platelet cytoskeleton contains elements of the prothrombinase   780–785, 1996.
                     complex. J Biol Chem 259(11):6947–6951, 1984.        118.  Teijeiro RG, et al: Calcium efflux from platelet vesicles of the dense tubular sys-
                    87.  Bodin S, Tronchere H, Payrastre B: Lipid rafts are critical membrane domains in blood   tem.  Analysis  of  the  possible  contribution  of  the  Ca   pump.  Mol  Cell Biochem
                                                                                                           2+
                     platelet activation processes. Biochim Biophys Acta 1610(2):247–257, 2003.  199(1–2):7–14, 1999.
                    88.  Locke D, et al: Lipid rafts orchestrate signaling by the platelet receptor glycoprotein     119.  Bergmeier W, Stefanini L: Novel molecules in calcium signaling in platelets. J Thromb
                     VI. J Biol Chem 277(21):18801–18809, 2002.             Haemost 7(Suppl 1):187–190, 2009.
                    89.  Shrimpton CN, et al: Localization of the adhesion receptor glycoprotein Ib-IX-V     120.  Dziadek MA, Johnstone LS: Biochemical properties and cellular localisation of STIM
                     complex to lipid rafts is required for platelet adhesion and activation.  J Exp Med   proteins. Cell Calcium 42(2):123–132, 2007.
                     196(8):1057–1066, 2002.                              121.  Grosse J, et al: An EF hand mutation in Stim1 causes premature platelet activation and
                    90.  Heijnen HF, et al: Concentration of rafts in platelet filopodia correlates with recruit-  bleeding in mice. J Clin Invest 117(11):3540–3550, 2007.
                     ment of c-Src and CD63 to these domains. J Thromb Haemost 1(6):1161–1173, 2003.    122.  Varga-Szabo D, et al: The calcium sensor STIM1 is an essential mediator of arterial
                    91.  Bodin S, et al: Production of phosphatidylinositol 3,4,5-trisphosphate and phosphat-  thrombosis and ischemic brain infarction. J Exp Med 205(7):1583–1591, 2008.
                     idic acid in platelet rafts: Evidence for a critical role of cholesterol-enriched domains     123.  Bergmeier W, et al: R93W mutation in Orai1 causes impaired calcium influx in plate-
                     in human platelet activation. Biochemistry 40(50):15290–15299, 2001.  lets. Blood 113(3):675–678, 2009.





          Kaushansky_chapter 112_p1829-1914.indd   1887                                                                 17/09/15   3:30 pm
   1907   1908   1909   1910   1911   1912   1913   1914   1915   1916   1917