Page 1913 - Williams Hematology ( PDFDrive )
P. 1913
1888 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1889
124. Braun A, et al: Orai1 (CRACM1) is the platelet SOC channel and essential for patho- 160. Kenney DM, Linck RW: The cytoskeleton of unstimulated blood platelets: Struc-
logical thrombus formation. Blood 113(9):2056–2063, 2009. ture and composition of the isolated marginal microtubular band. J Cell Sci 78:1–22,
125. Feske S, et al: A mutation in Orai1 causes immune deficiency by abrogating CRAC 1985.
channel function. Nature 441(7090):179–185, 2006. 161. Aslan JE, et al: Histone deacetylase 6-mediated deacetylation of alpha-tubulin coor-
126. Feske S, et al: Severe combined immunodeficiency due to defective binding of the dinates cytoskeletal and signaling events during platelet activation. Am J Physiol Cell
nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur J Immu- Physiol 305(12):C1230–9, 2013.
nol 26(9):2119–2126, 1996. 162. Sadoul K, et al: HDAC6 controls the kinetics of platelet activation. Blood 120(20):
127. Picard C, et al: STIM1 mutation associated with a syndrome of immunodeficiency 4215–4218, 2012.
and autoimmunity. N Engl J Med 360(19):1971–1980, 2009. 163. Italiano JE Jr, et al: Mechanisms and implications of platelet discoid shape. Blood
128. Redondo PC, et al: Intracellular Ca2+ store depletion induces the formation of mac- 101(12):4789–4796, 2003.
romolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and 164. Freson K, et al: The TUBB1 Q43P functional polymorphism reduces the risk of
SERCA3 in human platelets. Biochim Biophys Acta 1783(6):1163–1176, 2008. cardiovascular disease in men by modulating platelet function and structure. Blood
129. Sage SO, Brownlow SL, Rosado JA: TRP channels and calcium entry in human plate- 106(7):2356–2362, 2005.
lets. Blood 100(12):4245–4246, 2002. 165. Kunishima S, et al: Mutation of the beta1-tubulin gene associated with congenital
130. Varga-Szabo D, et al: Store-operated Ca(2+) entry in platelets occurs independently of macrothrombocytopenia affecting microtubule assembly. Blood 113(2):458–461,
transient receptor potential (TRP) C1. Pflugers Arch 457(2):377–387, 2008. 2009.
131. Gerrard JM, White JG, Rao GH, Townsend D: Localization of platelet prostaglandin 166. Navarro-Nunez L, et al: Rare homozygous status of P43 beta1-tubulin polymorphism
production in the platelet dense tubular system. Am J Pathol 83(2):283–298, 1976. causes alterations in platelet ultrastructure. Thromb Haemost 105(5):855–863, 2011.
132. Picot D, Loll PJ, Garavito RM: The X-ray crystal structure of the membrane protein 167. Kunishima S, et al: TUBB1 mutation disrupting microtubule assembly impairs
prostaglandin H2 synthase-1. Nature 1994;367(6460):243–249, 1976. proplatelet formation and results in congenital macrothrombocytopenia. Eur J
133. Fox JE: The platelet cytoskeleton. Thromb Haemost 70(6):884–893, 1993. Haematol 92(4):276–282, 2014.
134. Fox JE, et al: Identification of a membrane skeleton in platelets. J Cell Biol 106(5): 168. Kunishima S, et al: Mutation of the beta1-tubulin gene associated with congenital
1525–1538, 1988. macrothrombocytopenia affecting microtubule assembly. Blood 113(2):458–461,
135. Fox JE, et al: Spectrin is associated with membrane-bound actin filaments in platelets 2009.
and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 169. Nachmias VT, Yoshida K: The cytoskeleton of the blood platelet: A dynamic structure.
69(2):537–545, 1987. Adv Cell Biol 2: 181–211, 1988.
136. Hartwig JH, DeSisto M: The cytoskeleton of the resting human blood platelet: Struc- 170. Safer D, Nachmias VT: Beta thymosins as actin binding peptides. Bioessays 16(8):590,
ture of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1994.
112(3):407–425, 1991. 171. Rosenberg S, Stracher A: Effect of actin-binding protein on the sedimentation proper-
137. Barkalow KL, et al: Alpha-adducin dissociates from F-actin and spectrin during plate- ties of actin. J Cell Biol 1982;94(1):51–55, 1988.
let activation. J Cell Biol 161(3):557–570, 2003. 172. Rosenberg S, Stracher A, Burridge K: Isolation and characterization of a calcium-
138. Kaiser HW, O’Keefe E, Bennett V: Adducin: Ca++-dependent association with sites of sensitive alpha-actinin-like protein from human platelet cytoskeletons. J Biol Chem
cell-cell contact. J Cell Biol 109(2):557–569, 1989. 256(24):12986–12991, 1981.
139. Kuhlman PA, et al: A new function for adducin. Calcium/calmodulin-regulated cap- 173. Rosenberg S, Stracher A, Lucas RC: Isolation and characterization of actin and act-
ping of the barbed ends of actin filaments. J Biol Chem 271(14):7986–7991, 1996. in-binding protein from human platelets. J Cell Biol 91(1):201–211, 1981.
140. Matsuoka Y, Li X, Bennett V: Adducin: Structure, function and regulation. Cell Mol 174. Fucini P, et al: The repeating segments of the F-actin cross-linking gelation factor
Life Sci 57(6):884–895, 2000. (ABP-120) have an immunoglobulin-like fold. Nat Struct Biol 4(3):223–230, 1997.
141. Calderwood DA, et al: Increased filamin binding to beta-integrin cytoplasmic 175. Gorlin JB, et al: Human endothelial actin-binding protein (ABP-280, nonmuscle fil-
domains inhibits cell migration. Nat Cell Biol 3(12):1060–1068, 2001. amin): A molecular leaf spring. J Cell Biol 111(3):1089–1105, 1990.
142. Ithychanda SS, et al: Migfilin, a molecular switch in regulation of integrin activation. J 176. Gorlin JB, et al: Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric
Biol Chem 284(7):4713–4722, 2009. to the color vision locus (R/GCP) and centromeric to G6PD in Xq28. Genomics
143. Kiema T, et al: The molecular basis of filamin binding to integrins and competition 17(2):496–498, 1993.
with talin. Mol Cell 21(3):337–347, 2006. 177. Takafuta T, et al: Human beta-filamin is a new protein that interacts with the cytoplas-
144. Tadokoro S, et al: Talin binding to integrin beta tails: A final common step in integrin mic tail of glycoprotein Ibalpha. J Biol Chem 273(28):17531–17538, 1998.
activation. Science 302(5642):103–106, 2003. 178. Ohta Y, et al: The small GTPase RalA targets filamin to induce filopodia. Proc Natl
145. Tremuth L, et al: A fluorescence cell biology approach to map the second integrin- Acad Sci U S A 96(5):2122–2128, 1999.
binding site of talin to a 130-amino acid sequence within the rod domain. J Biol Chem 179. Stossel TP, et al: Filamins as integrators of cell mechanics and signalling. Nat Rev Mol
279(21):22258–22266, 2004. Cell Biol 2(2):138–145, 2001.
146. Ulmer TS, et al: NMR analysis of structure and dynamics of the cytosolic tails of inte- 180. Kovacsovics TJ, Hartwig JH: Thrombin-induced GPIb-IX centralization on the platelet
grin alpha IIb beta 3 in aqueous solution. Biochemistry 40(25):7498–7508, 2001. surface requires actin assembly and myosin II activation. Blood 87(2):618–629, 1996.
147. Vinogradova O, et al: A structural mechanism of integrin alpha(IIb)beta(3) “inside- 181. Meyer SC, et al: Identification of the region in actin-binding protein that binds to the
out” activation as regulated by its cytoplasmic face. Cell 110(5):587–597, 2002. cytoplasmic domain of glycoprotein IBalpha. J Biol Chem 272(5):2914–2919, 1997.
148. Yan B, et al: Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic 182. Karpatkin S, Langer RM: Biochemical energetics of simulated platelet plug formation.
domain. J Biol Chem 276(30):28164–28170, 2001. Effect of thrombin, adenosine diphosphate, and epinephrine on intra- and extracellu-
149. Zhu J, et al: Structure of a complete integrin ectodomain in a physiologic resting state lar adenine nucleotide kinetics. J Clin Invest 47(9):2158–2168, 1968.
and activation and deactivation by applied forces. Mol Cell 32(6):849–861, 2008. 183. Akkerman JW, et al: A novel technique for rapid determination of energy consump-
150. Podor TJ, et al: Vimentin exposed on activated platelets and platelet microparticles tion in platelets. Demonstration of different energy consumption associated with
localizes vitronectin and plasminogen activator inhibitor complexes on their surface. three secretory responses. Biochem J 210(1):145–155, 1983.
J Biol Chem 277(9):7529–7539, 2002. 184. Akkerman JW, Holmsen H: Interrelationships among platelet responses: Studies on
151. Cramer EM, et al: Ultrastructure of platelet formation by human megakaryocytes cul- the burst in proton liberation, lactate production, and oxygen uptake during platelet
tured with the Mpl ligand. Blood 89(7):2336–2346, 1997. aggregation and Ca2+ secretion. Blood 57(5):956–966, 1981.
152. Italiano JE Jr, et al: Blood platelets are assembled principally at the ends of proplatelet 185. Guppy M, et al: Fuel choices by human platelets in human plasma. Eur J Biochem
processes produced by differentiated megakaryocytes. J Cell Biol 147(6):1299–1312, 244(1):161–167, 1997.
1999. 186. Holmsen H, Farstad M: Energy metabolism, in Platelet Responses and Metabolism,
153. Italiano JE, JH Hartwig: Megakaryocyte development and platelet formation, in Plate- edited by H Holmsen, p 245. CRC Press, Boca Raton, FL, 1987.
lets, edited by A Michelson, p 23. Academic Press, San Diego, 2007. 187. Akkerman JWN, Verhgoeven AJM: Energy metabolism and function, in Platelet
154. Hartwig J: Platelet structure, in Platelets, edited by A Michelson, p 75. Academic Press, Responses and Metabolism, edited by H Holmsen, p 69. CRC Press, Boca Raton, FL, 1987.
San Diego, 2007. 188. Shimizu T, Murphy S: Roles of acetate and phosphate in the successful storage of plate-
155. Crawford N, Scrutton MC: Biochemistry of the blood platelet, in Haemostasis and let concentrates prepared with an acetate-containing additive solution. Transfusion
Thrombosis, edited by AL Bloom, DP Thomas, EGD Tuddenham, p 89. Churchill 33(4):304–310, 1993.
Livingstone, London, England, 1994. 189. Dean WL: Structure, function and subcellular localization of a human platelet
156. Miki H, Okada Y, Hirokawa N: Analysis of the kinesin superfamily: Insights into Ca2+-ATPase. Cell Calcium 10(5):289–297, 1989.
structure and function. Trends Cell Biol 15(9):467–476, 2005. 190. Simons ER, Greenberg-Sperssky SM: Transmembrane monovalent cation gradients,
157. Pfister KK, et al: Genetic analysis of the cytoplasmic dynein subunit families. PLoS in Platelet Responses and Metabolism, edited by H Holmsen, p 31. CRC Press, Boca
Genet 2(1):e1. Raton, FL, 1987.
158. Sheetz MP: Microtubule motor complexes moving membranous organelles. Cell 191. Daniel JL, et al: Nucleotide exchange between cytosolic ATP and F-actin-bound ADP
Struct Funct 1996;21(5):369–373, 2006. may be a major energy-utilizing process in unstimulated platelets. Eur J Biochem
159. Patel-Hett S, et al: Visualization of microtubule growth in living platelets reveals 156(3):677–684, 1986.
a dynamic marginal band with multiple microtubules. Blood 111(9):4605–4616, 192. Verhoeven AJ, et al: Turnover of the phosphomonoester groups of polyphosphoinosi-
2008. tol lipids in unstimulated human platelets. Eur J Biochem 166(1):3–9, 1987.
Kaushansky_chapter 112_p1829-1914.indd 1888 17/09/15 3:30 pm

