Page 1915 - Williams Hematology ( PDFDrive )
P. 1915

1890           Part XII:  Hemostasis and Thrombosis                                                                                                      Chapter 112:  Platelet Morphology, Biochemistry, and Function           1891




                 260.  Azam M, et al: Disruption of the mouse mu-calpain gene reveals an essential role in     294.  Weyrich AS, et al: MTOR-dependent synthesis of Bcl-3 controls the retraction of
                   platelet function. Mol Cell Biol 21(6):2213–2220, 2001.  fibrin clots by activated human platelets. Blood 109(5):1975–1983, 2007.
                 261.  Furman MI, Gardner TM, Goldschmidt-Clermont PJ: Mechanisms of cytoskeletal     295.  Ward CM, Kestin AS, Newman PJ: A Leu262Pro mutation in the integrin beta(3)
                   reorganization during platelet activation. Thromb Haemost 70(1):229–232, 1993.  subunit results in an alpha(IIb)-beta(3) complex that binds fibrin but not fibrinogen.
                 262.  McNicol A, Israels SJ: Platelet dense granules: Structure, function and implications for   Blood 96(1):161–169, 2000.
                   haemostasis. Thromb Res 1999;95(1):1–18, 1993.       296.  Rooney MM, et al: The contribution of the three hypothesized integrin-binding sites
                 263.  Leon C, et al: Megakaryocyte-restricted MYH9 inactivation dramatically affects   in fibrinogen to platelet-mediated clot retraction. Blood 92(7):2374–2381, 1998.
                   hemostasis  while  preserving  platelet  aggregation  and  secretion.  Blood  110(9):     297.  Rooney MM, Parise LV, Lord ST: Dissecting clot retraction and platelet aggregation.
                   3183–3191, 2007.                                       Clot retraction does not require an intact fibrinogen gamma chain C terminus. J Biol
                 264.  Escolar G, Krumwiede M, White JG: Organization of the actin cytoskeleton of resting   Chem 271(15):8553–8555, 1996.
                   and activated platelets in suspension. Am J Pathol 123:86–94, 1986.    298.  Podolnikova NP, et al: Identification of a novel binding site for platelet integrins alpha
                 265.  Fox JE, et al: Actin filament content and organization in unstimulated platelets. J Cell   IIb beta 3 (GPIIbIIIa) and alpha 5 beta 1 in the gamma C-domain of fibrinogen. J Biol
                   Biol 98:1985.                                          Chem 278(34):32251–32258, 2003.
                 266.  Hartwig JH: Platelet structure, in  Platelets, edited by AD Michelson, pp 75–97.      299.  Remijn JA, Ijsseldijk MJ, de Groot PG: Role of the fibrinogen gamma-chain sequence
                   Academic Press, San Diego, 2007, 1984.                 gamma316–322 in platelet-mediated clot retraction.  J Thromb Haemost 1(10):
                 267.  Nachmias VT, Yoshida K: The cytoskeleton of the blood platelets: A dynamic struc-  2245–2246, 2003.
                   ture. Adv Cyclic Nucleotide Res 2:181–211, 1999.     300.  Podolnikova NP, et al: The interaction of integrin alphaIIbbeta3 with fibrin occurs
                 268.  Weber A, et al: Interaction of thymosin-β-4 with muscle and platelet actin. Implica-  through multiple binding sites in the alphaIIb beta-propeller domain. J Biol Chem
                   tions for actin sequestration in resting platelets. Biochemistry 31(27):6179–6185, 1992.  289(4):2371–2383, 2014.
                 269.  Gonnella PA, Nachmias VT: Platelet activation and microfilament bundling. J Biol     301.  Kasahara K, et al: Clot retraction is mediated by factor XIII-dependent fibrin-
                   Chem 89:146, 1981.                                     alphaIIbbeta3-myosin axis in platelet sphingomyelin-rich membrane rafts.  Blood
                 270.  Nachmias VT: Cytoskeleton of human platelets at rest and after spreading. J Cell Biol   122(19):3340–3348, 2013.
                   86:795, 1980.                                        302.  Munday AD, Lopez JA: Factor XIII: Sticking it to platelets. Blood 122(19):3246–3247,
                 271.  Budtz-Olsen OE: Clot Retraction. Charles C Thomas, Springfield, 1951.  2013.
                 272.  Stalker TJ, et al: A systems approach to hemostasis: 3. Thrombus consolidation reg-    303.  Dubois C, et al: Thrombin binding to GPIbalpha induces platelet aggregation and
                   ulates intrathrombus solute transport and local thrombin activity.  Blood 124(11):   fibrin clot retraction supported by resting alphaIIbbeta3 interaction with polymerized
                   1824–1831, 2014.                                       fibrin. Thromb Haemost 89(5):853–865, 2003.
                 273.  Kunitada S, FitzGerald GA, Fitzgerald DJ: Inhibition of clot lysis and decreased bind-    304.  Keuren JF, et al: Von Willebrand factor C1C2 domain is involved in platelet adhesion
                   ing of tissue-type plasminogen activator as a consequence of clot retraction. Blood   to polymerized fibrin at high shear rate. Blood 103(5):1741–1746, 2004.
                   79(6):1420–1427, 1992.                               305.  Huizing M, et al: Disorders of lysosome-related organelle biogenesis: Clinical and
                 274.  Cohen I, Gerrard JM, White JG: Ultrastructure of clots during isometric contraction.   molecular genetics. Annu Rev Genomics Hum Genet 9:359–386, 2008.
                   J Cell Biol 91:775.                                  306.  Holmsen H, Kaplan KL, Dangelmaier CA: Differential energy requirements for plate-
                 275.  Pollard TD, et al: Contractile proteins in platelet activation and contraction. Ann N Y   let responses. A simultaneous study of aggregation, three secretory processes, arachi-
                   Acad Sci 283:218, 1977.                                donate liberation, phosphatidylinositol breakdown and phosphatidate production.
                 276.  Vaiyapuri S, et al: EphB2 regulates contact-dependent and contact-independent sig-  Biochem J 208(1):9–18, 1982.
                   naling to control platelet function. Blood 2015;125(4):720–730, 1982.    307.  Verhoeven AJ, Mommersteeg ME, Akkerman JW: Quantification of energy consump-
                 277.  Khatlani T, et al: The beta isoform of the catalytic subunit of protein phosphatase 2B   tion in platelets during thrombin-induced aggregation and secretion. Tight coupling
                   restrains platelet function by suppressing outside-in alphaII b beta3 integrin signal-  between platelet responses and the increment in energy consumption.  Biochem J
                   ing. J Thromb Haemost 12(12):2089–2101, 2014.          221(3):777–787, 1984.
                 278.  Yi W, Li Q, Shen J, et al: Modulation of platelet activation and thrombus formation     308.  Ciferri S, et al: Platelets release their lysosomal content in vivo in humans upon acti-
                   using a pan-PI3K inhibitor S14161. PLoS One 9(8):e102394, 2014.  vation. Thromb Haemost 83(1):157–164, 2000.
                 279.  Cohen I: The mechanism of clot retraction, in Platelet Membrane Glycoproteins, edited by     309.  Abrams C, Shattil SJ: Immunological detection of activated platelets in clinical disor-
                   JN George, AT Nurden, DR Phillips, pp 299–323. Plenum Press, New York, 1985, 2014.  ders. Thromb Haemost 65(5):467–473, 1991.
                 280.  Carr ME Jr, et al: Glycoprotein IIb/IIIa blockade inhibits platelet-mediated force     310.  Nieuwenhuis HK, et al: Studies with a monoclonal antibody against activated plate-
                   development and reduces gel elastic modulus. Thromb Haemost 73:499–505, 1995.  lets: Evidence that a secreted 53,000-molecular weight lysosome-like granule protein is
                 281.  Leistikow EA: Platelet internalization in early thrombogenesis. Semin Thromb Hemost   exposed on the surface of activated platelets in the circulation. Blood 70(3):838–845, 1987.
                   22(3):289–294, 1996.                                 311.  Zhang ZG, et al: Dynamic platelet accumulation at the site of the occluded middle cere-
                 282.  Morgenstern E, Daub M, Dierichs R: A new model for in vitro clot formation that   bral artery and in downstream microvessels is associated with loss of microvascular
                   considers the mode of the fibrin(ogen) contacts to platelets and the arrangement of   integrity after embolic middle cerebral artery occlusion. Brain Res 912(2):181–194, 2001.
                   the platelet cytoskeleton. Ann N Y Acad Sci 936:449–455, 2001.    312.  Castellot JJ Jr, et al: Inhibition of vascular smooth muscle cell growth by endothe-
                 283.  Braaten JV, Jerome WG, Hantgan RR: Uncoupling fibrin from integrin receptors has-  lial cell-derived heparin. Possible role of a platelet endoglycosidase.  J Biol Chem
                   tens fibrinolysis at the platelet-fibrin interface. Blood 83:982–993, 1994.  257(19):11256–11260, 1982.
                 284.  Coller BS, et al: A murine monoclonal antibody that completely blocks the binding     313.  Ugurbil K, Fukami MH, Holmsen H: 31P NMR studies of nucleotide storage in the
                   of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and   dense granules of pig platelets. Biochemistry 23(3):409–416, 1984.
                   binds to glycoproteins IIb and/or IIIa. J Clin Invest 72:325–338, 1983.    314.  Ugurbil K, Holmsen H, Shulman RG: Adenine nucleotide storage and secretion in
                 285.  Collet JP, et al: A structural and dynamic investigation of the facilitating effect of gly-  platelets as studied by 31P nuclear magnetic resonance. Proc Natl Acad Sci U S A
                   coprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res 90(4):428–434,   76(5):2227–2231, 1979.
                   2002.                                                315.  Lesurtel M, et al: Platelet-derived serotonin mediates liver regeneration.  Science
                 286.  Huang TC, et al: Differential effects of c7E3 Fab on thrombus formation and rt-PA-  312(5770):104–107, 2006.
                   mediated thrombolysis under flow conditions. Thromb Res 102(5):411–425, 2001.    316.  Gunay-Aygun M, Huizing M, Gahl WA: Molecular defects that affect platelet dense
                 287.  Mousa SA, Khurana S, Forsythe MS: Comparative in vitro efficacy of different platelet   granules. Semin Thromb Hemost 30(5):537–547, 2004.
                   glycoprotein IIb/IIIa antagonists on platelet-mediated clot strength induced by tissue     317.  Youssefian T, Cramer EM: Megakaryocyte dense granule components are sorted in
                   factor with use of thromboelastography: Differentiation among glycoprotein IIb/IIIa   multivesicular bodies. Blood 95(12):4004–4007, 2000.
                   antagonists. Arterioscler Thromb Vasc Biol 20(4):1162–1167, 2000.    318.  Nagle DL, et al: Identification and mutation analysis of the complete gene for
                 288.  Seiffert D, et al: Regulation of clot retraction by glycoprotein IIb/IIIa antagonists.   Chediak-Higashi syndrome. Nat Genet 14(3):307–311, 1996.
                   Thromb Res 108(2–3):181–189, 2002.                   319.  FitzGerald GA, Dipyridamole. N Engl J Med 316(20):1247–1257, 1987.
                 289.  Jirouskova M, et al: A hamster antibody to the mouse fibrinogen gamma chain inhib-    320.  Hatmi M, et al: Evidence for cAMP-dependent platelet ectoprotein kinase activity that
                   its platelet-fibrinogen interactions and FXIIIa-mediated fibrin cross-linking, and   phosphorylates platelet glycoprotein IV (CD36). J Biol Chem 271(40):24776–24780,
                   facilitates thrombolysis. Thromb Haemost 86(4):1047–1056, 2001.  1996.
                 290.  Mor-Cohen R, et al: Disulfide bond exchanges in integrins alphaIIbbeta3 and     321.  Kalafatis M, et al: Phosphorylation of factor Va and factor VIIIa by activated platelets.
                   alphavbeta3 are required for activation and post-ligation signaling during clot retrac-  Blood 81(3):704–719, 1993.
                   tion. Thromb Res 133(5):826–836, 2014.               322.  Naik UP, Kornecki E, Ehrlich YH: Phosphorylation and dephosphorylation of human
                 291.  Law DA, et al: Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIb-  platelet surface proteins by an ecto-protein kinase/phosphatase system. Biochim Bio-
                   beta3 signalling and platelet function. Nature 401:808–811, 1999.  phys Acta 1092(2):256–264, 1991.
                 292.  Osdoit S, Rosa JP: Fibrin clot retraction by human platelets correlates with alpha(IIb)    323.  Harrison P, Cramer EM: Platelet alpha-granules. Blood Rev 7(1):52–62, 1993.
                   beta(3) integrin-dependent protein tyrosine dephosphorylation.  J Biol Chem     324.  Reed G: Platelet secretion, in Platelets, edited by A Michelson A, p 309. Academic
                   276(9):6703–6710, 2001.                                Press, San Diego, 2007.
                 293.  Flevaris P, et al: Two distinct roles of mitogen-activated protein kinases in platelets     325.  Hayward CP, et al: Factor V is complexed with multimerin in resting platelet
                   and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway.   lysates and colocalizes with multimerin in platelet alpha-granules.  J Biol Chem
                   Blood 113(4):893–901, 2009.                            270(33):19217–19224, 1995.







          Kaushansky_chapter 112_p1829-1914.indd   1890                                                                 17/09/15   3:30 pm
   1910   1911   1912   1913   1914   1915   1916   1917   1918   1919   1920