Page 1914 - Williams Hematology ( PDFDrive )
P. 1914

1888  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1889




                    193.  Akkerman JW, Holmsen H, Driver HA: Platelet aggregation and Ca2+ secretion are     228.  Patel D, et al: The dynamics of GPIIb/IIIa-mediated platelet-platelet interactions in
                     independent of simultaneous ATP production. FEBS Lett 100(2):286–290, 1979.  platelet adhesion/thrombus formation on collagen in vitro as revealed by videomi-
                    194.  van den Bosch H, de Vet EC, Zomer AW: The role of peroxisomes in ether lipid syn-  croscopy. Blood 101:929–936, 2003.
                     thesis. Back to the roots of PAF. Adv Exp Med Biol 416:33–40, 1996.    229.  Fox JE: On the role of calpain and Rho proteins in regulating integrin-induced signal-
                    195.  van den Bosch H, et al: Ether lipid synthesis and its deficiency in peroxisomal disor-  ing. Thromb Haemost 82(2):385–391, 1999.
                     ders. Biochimie 75(3–4):183–189, 1993.               230.  Hartwig JH, et al: Thrombin receptor ligation and activated Rac uncap actin filament
                    196.  Wanders RJ, et al: Deficiency of acyl-CoA:dihydroxyacetone phosphate acyltransfer-  barbed ends through phosphoinositide synthesis in permeabilized human platelets.
                     ase in thrombocytes of Zellweger patients: A simple postnatal diagnostic test. Clin   Cell 1995;82(4):643–653, 1999.
                     Chim Acta 151(3):217–221, 1985.                      231.  Lemmon MA, Ferguson KM, Abrams CS: Pleckstrin homology domains and the
                    197.  Holmsen H: Platelet secretion and energy metabolism, in Hemostasis and Thrombosis:   cytoskeleton. FEBS Lett 513(1):71–76, 2002.
                     Basic Principles and Clinical Practice, edited by RW Colman, VJ Marder, EW Salzman,     232.  Ma AD, Abrams CS: Pleckstrin homology domains and phospholipid-induced
                     p 524. JB Lippincott, Philadelphia, 1993.              cytoskeletal reorganization. Thromb Haemost 82(2):399–406, 1999.
                    198.  Shuster RC, Rubenstein AJ, Wallace DC: Mitochondrial DNA in anucleate human     233.  Lian L, Wang Y, Flick M, et al: Loss of pleckstrin defines a novel pathway for PKC-
                     blood cells. Biochem Biophys Res Commun 155(3):1360–1365, 1988.  mediated exocytosis. Blood 113(15):3577–3584, 2009.
                    199.  Boudreau LH, et al: Platelets release mitochondria serving as substrate for bacteri-    234.  Hitchcock IS, et al: Roles of focal adhesion kinase (FAK) in megakaryopoiesis and
                     cidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124(14):   platelet function: Studies using a megakaryocyte lineage specific FAK knockout. Blood
                     2173–2183, 2014.                                       111(2):596–604, 2008.
                    200.  Mason  KD,  et  al:  Programmed  anuclear  cell  death  delimits  platelet  life  span.  Cell     235.  Coller BS, Shattil SJ: The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: A technology-driven
                     128(6):1173–1186, 2007.                                saga of a receptor with twists, turns, and even a bend. Blood 112(8):3011–3025, 2008.
                    201.  Cardoso SM, et al: Cytochrome c oxidase is decreased in Alzheimer’s disease platelets.     236.  Pabla R, et al: Integrin-dependent control of translation: Engagement of integrin
                     Neurobiol Aging 25(1):105–110, 2004.                   alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol
                    202.  Dror N, et al: State-dependent alterations in mitochondrial complex I activity in platelets:   144(1):175–184, 1999.
                     A potential peripheral marker for schizophrenia. Mol Psychiatry 7(9):995–1001, 2002.    237.  Shattil SJ: Signaling through platelet integrin αIIbβ3: Inside-out, outside-in and side-
                    203.  Lenaz G, et al: Mitochondrial complex I defects in aging. Mol Cell Biochem 174(1–2):   ways. Thromb Haemost 82(2):318–325, 1999.
                     329–333, 1997.                                       238.  Shattil SJ, Newman PJ: Integrins: Dynamic scaffolds for adhesion and signaling in
                    204.  Lenaz G, et al: Mitochondrial bioenergetics in aging. Biochim Biophys Acta 1459(2–3):   platelets. Blood 104(6):1606–1615, 2004.
                     397–404, 2000.                                       239.  Kulkarni S, et al: Conversion of platelets from a proaggregatory to a proinflamma-
                    205.  Mancuso M, et al: Decreased platelet cytochrome c oxidase activity is accompanied   tory adhesive phenotype: Role of PAF in spatially regulating neutrophil adhesion and
                     by increased blood lactate concentration during exercise in patients with Alzheimer   spreading. Blood 110(6):1879–1886, 2007.
                     disease. Exp Neurol 182(2):421–426, 2003.            240.  Cho J, Mosher DF: Role of fibronectin assembly in platelet thrombus formation. J
                    206.  Schapira AH: Mitochondrial dysfunction in neurodegenerative disorders.  Biochim   Thromb Haemost 4(7):1461–1469, 2006.
                     Biophys Acta 1366(1–2):225–233, 1998.                241.  George JN, et al: Platelet surface glycoproteins. Studies on resting and activated plate-
                    207.  Yamagishi SI, et al: Hyperglycemia potentiates collagen-induced platelet activation   lets and platelet membrane microparticles in normal subjects, and observations in
                     through mitochondrial superoxide overproduction. Diabetes 50(6):1491–1494, 2001.  patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest
                    208.  Dale GL, Friese P: Bax activators potentiate coated-platelet formation.  J Thromb     78:340–348, 1986.
                     Haemost 4(12):2664–2669, 2006.                       242.  Michelson AD: Thrombin-induced down-regulation of the platelet membrane glyco-
                    209.  Jobe SM, et al: Critical role for the mitochondrial permeability transition pore and   protein Ib-IX complex. Semin Thromb Hemost 18:18–27, 1992.
                     cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265, 2008.    243.  Bennett JS, et al: The platelet cytoskeleton regulates the affinity of the integrin
                    210.  Leung R, et al: Persistence of procoagulant surface expression on activated human   alpha(IIb)beta(3) for fibrinogen. J Biol Chem 274(36):25301–25307, 1999.
                     platelets:  Involvement  of  apoptosis  and  aminophospholipid  translocase  activity.      244.  Patil S, et al: Identification of a talin-binding site in the integrin beta(3) subunit dis-
                     J Thromb Haemost 5(3):560–570, 2007.                   tinct from the NPLY regulatory motif of post-ligand binding functions. The talin
                    211.  Remenyi G, et al: Role of mitochondrial permeability transition pore in coated-   n-terminal head domain interacts with the membrane-proximal region of the beta(3)
                     platelet formation. Arterioscler Thromb Vasc Biol 25(2):467–471, 2005.  cytoplasmic tail. J Biol Chem 274(40):28575–28583, 1999.
                    212.  Nachmias VT: Platelet and megakaryocyte shape change: Triggered alterations in the     245.  Tadokoro S, et al: Talin binding to integrin beta tails: A final common step in integrin
                     cytoskeleton. Semin Hematol 20(4):261–281, 1983.       activation. Science 302(5642):103–106, 2003.
                    213.  Maurer-Spurej E, Devine DV: Platelet aggregation is not initiated by platelet shape     246.  Yan B, et al: Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic
                     change. Lab Invest 2001;81(11):1517–1525, 1983.        domain. J Biol Chem 276(30):28164–28170, 2001.
                    214.  Born GV, et al: Quantification of the morphological reaction of platelets to aggregat-    247.  Shattil SJ, Brugge JS: Protein tyrosine phosphorylation and the adhesive functions of
                     ing agents and of its reversal by aggregation inhibitors. J Physiol 280:193–212, 1978.  platelets. Curr Opin Cell Biol 3:869–879, 1991.
                    215.  Coller BS: Biochemical and electrostatic considerations in primary platelet aggrega-    248.  Fox JE: The platelet cytoskeleton. Thromb Haemost 70(6):884–893, 1993.
                     tion. Ann N Y Acad Sci 416:693.                      249.  Fox JE: Platelet cytoskeleton, in  Hemostasis and Thrombosis: Basic Principles and
                    216.  Hartwig JH, et al: The elegant platelet: Signals controlling actin assembly. Thromb   Clinical Practice, edited by RW Colman, J Hirsh, VJ Marder, AW Clowes, JN George,
                     Haemost 82:392–398, 1984, 1999.                        pp 429–446. Lippincott, Williams & Wilkins, Philadelphia, 2001.
                    217.  Falet H, et al: Importance of free actin filament barbed ends for Arp2/3 complex func-    250.  Zhu J, Luo BH, Xiao T, et al: Structure of a complete integrin ectodomain in a phys-
                     tion in platelets and fibroblasts. Proc Natl Acad Sci U S A 99(26):16782–16787, 2002.  iologic  resting  state  and  activation  and  deactivation  by  applied  forces.  Mol Cell
                    218.  Carlier MF, et al: Tbeta 4 is not a simple G-actin sequestering protein and interacts   32(6):849–861, 2008.
                     with F-actin at high concentration. J Biol Chem 271(16):9231–9239, 1996.    251.  Li R, et al: Activation of integrin alphaIIbbeta3 by modulation of transmembrane
                    219.  Lind SE, Yin HL, Stossel TP: Human platelets contain gelsolin. A regulator of actin   helix associations. Science 300(5620):795–798, 2003.
                     filament length. J Clin Invest 69(6):1384–1387, 1982.    252.  Olorundare OE, Simmons SR, Albrecht RM: Cytochalasin D and E: Effects on fibrin-
                    220.  Barkalow K, Hartwig JH: The role of actin filament barbed-end exposure in cytoskel-  ogen receptor movement and cytoskeletal reorganization in fully spread, surface-
                     etal dynamics and cell motility. Biochem Soc Trans 23(3):451–456, 1995.  activated platelets: A correlative light and electron microscopic investigation. Blood
                    221.  Barkalow K, et al: A-Adducin dissociates from F-actin filaments and spectrin during   79(1):99–109, 1992.
                     platelet activation. J Cell Biol 161:557–570, 2003.    253.  White JG: Induction of patching and its reversal on surface-activated human platelets.
                    222.  Machesky LM, Gould KL: The Arp2/3 complex: A multifunctional actin organizer.   Br J Haematol 76(1):108–115, 1990.
                     Curr Opin Cell Biol 11(1):117–121, 1999.             254.  Fox JE, et al: Identification of two proteins (actin-binding protein and P235) that are
                    223.  Mullins RD, Heuser JA, Pollard TD: The interaction of Arp2/3 complex with actin:   hydrolyzed by endogenous Ca++-dependent protease during platelet aggregation. J
                     Nucleation, high affinity pointed end capping, and formation of branching networks   Biol Chem 260:1060–1066, 1985.
                     of filaments. Proc Natl Acad Sci U S A 95(11):6181–6186, 1998.    255.  Fox  JE,  Reynolds  CC,  Phillips  DR:  Calcium-dependent  proteolysis  occurs during
                    224.  Heemskerk JW, et al: Collagen but not fibrinogen surfaces induce bleb formation,   platelet aggregation. J Biol Chem 258(16):9973–9981, 1983.
                     exposure of phosphatidylserine, and procoagulant activity of adherent platelets: Evi-    256.  Fox JE, et al: Evidence that activation of platelet calpain is induced as a conse-
                     dence for regulation by protein tyrosine kinase-dependent Ca2+ responses.  Blood   quence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol
                     90(7):2615–2625, 1997.                                 120(6):1501–1507, 1993.
                    225.  Watson SP: Collagen receptor signaling in platelets  and megakaryocytes.  Thromb       257.  Xi X, et al: Critical roles for the COOH-terminal NITY and RGT sequences of the
                     Haemost 82(2):365–376, 1999.                           integrin beta3 cytoplasmic domain in inside-out and outside-in signaling. J Cell Biol
                    226.  Jirouskova M, Jaiswal JK, Coller BS: Ligand density dramatically affects integrin alpha   162(2):329–339, 2003.
                     IIb beta 3-mediated platelet signaling and spreading. Blood 109(5260):5269, 2007.    258.  Flevaris P, et al: A molecular switch that controls cell spreading and retraction. J Cell
                    227.  Coller BS, et al: Studies of activated GPIIb/IIIa receptors on the luminal surface of   Biol 179(3):553–565, 2007.
                     adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high     259.  Dachary-Prigent J, et al: Annexin V as a probe of aminophospholipid exposure and
                     density fibrinogen. J Clin Invest 92:2796–2806, 1999, 1993.  platelet membrane vesiculation: A flow cytometry study showing a role for free sulf-
                                                                            hydryl groups. Blood 81:2554–2565, 1993.







          Kaushansky_chapter 112_p1829-1914.indd   1889                                                                 17/09/15   3:30 pm
   1909   1910   1911   1912   1913   1914   1915   1916   1917   1918   1919