Page 1914 - Williams Hematology ( PDFDrive )
P. 1914
1888 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1889
193. Akkerman JW, Holmsen H, Driver HA: Platelet aggregation and Ca2+ secretion are 228. Patel D, et al: The dynamics of GPIIb/IIIa-mediated platelet-platelet interactions in
independent of simultaneous ATP production. FEBS Lett 100(2):286–290, 1979. platelet adhesion/thrombus formation on collagen in vitro as revealed by videomi-
194. van den Bosch H, de Vet EC, Zomer AW: The role of peroxisomes in ether lipid syn- croscopy. Blood 101:929–936, 2003.
thesis. Back to the roots of PAF. Adv Exp Med Biol 416:33–40, 1996. 229. Fox JE: On the role of calpain and Rho proteins in regulating integrin-induced signal-
195. van den Bosch H, et al: Ether lipid synthesis and its deficiency in peroxisomal disor- ing. Thromb Haemost 82(2):385–391, 1999.
ders. Biochimie 75(3–4):183–189, 1993. 230. Hartwig JH, et al: Thrombin receptor ligation and activated Rac uncap actin filament
196. Wanders RJ, et al: Deficiency of acyl-CoA:dihydroxyacetone phosphate acyltransfer- barbed ends through phosphoinositide synthesis in permeabilized human platelets.
ase in thrombocytes of Zellweger patients: A simple postnatal diagnostic test. Clin Cell 1995;82(4):643–653, 1999.
Chim Acta 151(3):217–221, 1985. 231. Lemmon MA, Ferguson KM, Abrams CS: Pleckstrin homology domains and the
197. Holmsen H: Platelet secretion and energy metabolism, in Hemostasis and Thrombosis: cytoskeleton. FEBS Lett 513(1):71–76, 2002.
Basic Principles and Clinical Practice, edited by RW Colman, VJ Marder, EW Salzman, 232. Ma AD, Abrams CS: Pleckstrin homology domains and phospholipid-induced
p 524. JB Lippincott, Philadelphia, 1993. cytoskeletal reorganization. Thromb Haemost 82(2):399–406, 1999.
198. Shuster RC, Rubenstein AJ, Wallace DC: Mitochondrial DNA in anucleate human 233. Lian L, Wang Y, Flick M, et al: Loss of pleckstrin defines a novel pathway for PKC-
blood cells. Biochem Biophys Res Commun 155(3):1360–1365, 1988. mediated exocytosis. Blood 113(15):3577–3584, 2009.
199. Boudreau LH, et al: Platelets release mitochondria serving as substrate for bacteri- 234. Hitchcock IS, et al: Roles of focal adhesion kinase (FAK) in megakaryopoiesis and
cidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 124(14): platelet function: Studies using a megakaryocyte lineage specific FAK knockout. Blood
2173–2183, 2014. 111(2):596–604, 2008.
200. Mason KD, et al: Programmed anuclear cell death delimits platelet life span. Cell 235. Coller BS, Shattil SJ: The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: A technology-driven
128(6):1173–1186, 2007. saga of a receptor with twists, turns, and even a bend. Blood 112(8):3011–3025, 2008.
201. Cardoso SM, et al: Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. 236. Pabla R, et al: Integrin-dependent control of translation: Engagement of integrin
Neurobiol Aging 25(1):105–110, 2004. alphaIIbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol
202. Dror N, et al: State-dependent alterations in mitochondrial complex I activity in platelets: 144(1):175–184, 1999.
A potential peripheral marker for schizophrenia. Mol Psychiatry 7(9):995–1001, 2002. 237. Shattil SJ: Signaling through platelet integrin αIIbβ3: Inside-out, outside-in and side-
203. Lenaz G, et al: Mitochondrial complex I defects in aging. Mol Cell Biochem 174(1–2): ways. Thromb Haemost 82(2):318–325, 1999.
329–333, 1997. 238. Shattil SJ, Newman PJ: Integrins: Dynamic scaffolds for adhesion and signaling in
204. Lenaz G, et al: Mitochondrial bioenergetics in aging. Biochim Biophys Acta 1459(2–3): platelets. Blood 104(6):1606–1615, 2004.
397–404, 2000. 239. Kulkarni S, et al: Conversion of platelets from a proaggregatory to a proinflamma-
205. Mancuso M, et al: Decreased platelet cytochrome c oxidase activity is accompanied tory adhesive phenotype: Role of PAF in spatially regulating neutrophil adhesion and
by increased blood lactate concentration during exercise in patients with Alzheimer spreading. Blood 110(6):1879–1886, 2007.
disease. Exp Neurol 182(2):421–426, 2003. 240. Cho J, Mosher DF: Role of fibronectin assembly in platelet thrombus formation. J
206. Schapira AH: Mitochondrial dysfunction in neurodegenerative disorders. Biochim Thromb Haemost 4(7):1461–1469, 2006.
Biophys Acta 1366(1–2):225–233, 1998. 241. George JN, et al: Platelet surface glycoproteins. Studies on resting and activated plate-
207. Yamagishi SI, et al: Hyperglycemia potentiates collagen-induced platelet activation lets and platelet membrane microparticles in normal subjects, and observations in
through mitochondrial superoxide overproduction. Diabetes 50(6):1491–1494, 2001. patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest
208. Dale GL, Friese P: Bax activators potentiate coated-platelet formation. J Thromb 78:340–348, 1986.
Haemost 4(12):2664–2669, 2006. 242. Michelson AD: Thrombin-induced down-regulation of the platelet membrane glyco-
209. Jobe SM, et al: Critical role for the mitochondrial permeability transition pore and protein Ib-IX complex. Semin Thromb Hemost 18:18–27, 1992.
cyclophilin D in platelet activation and thrombosis. Blood 111(3):1257–1265, 2008. 243. Bennett JS, et al: The platelet cytoskeleton regulates the affinity of the integrin
210. Leung R, et al: Persistence of procoagulant surface expression on activated human alpha(IIb)beta(3) for fibrinogen. J Biol Chem 274(36):25301–25307, 1999.
platelets: Involvement of apoptosis and aminophospholipid translocase activity. 244. Patil S, et al: Identification of a talin-binding site in the integrin beta(3) subunit dis-
J Thromb Haemost 5(3):560–570, 2007. tinct from the NPLY regulatory motif of post-ligand binding functions. The talin
211. Remenyi G, et al: Role of mitochondrial permeability transition pore in coated- n-terminal head domain interacts with the membrane-proximal region of the beta(3)
platelet formation. Arterioscler Thromb Vasc Biol 25(2):467–471, 2005. cytoplasmic tail. J Biol Chem 274(40):28575–28583, 1999.
212. Nachmias VT: Platelet and megakaryocyte shape change: Triggered alterations in the 245. Tadokoro S, et al: Talin binding to integrin beta tails: A final common step in integrin
cytoskeleton. Semin Hematol 20(4):261–281, 1983. activation. Science 302(5642):103–106, 2003.
213. Maurer-Spurej E, Devine DV: Platelet aggregation is not initiated by platelet shape 246. Yan B, et al: Calpain cleavage promotes talin binding to the beta 3 integrin cytoplasmic
change. Lab Invest 2001;81(11):1517–1525, 1983. domain. J Biol Chem 276(30):28164–28170, 2001.
214. Born GV, et al: Quantification of the morphological reaction of platelets to aggregat- 247. Shattil SJ, Brugge JS: Protein tyrosine phosphorylation and the adhesive functions of
ing agents and of its reversal by aggregation inhibitors. J Physiol 280:193–212, 1978. platelets. Curr Opin Cell Biol 3:869–879, 1991.
215. Coller BS: Biochemical and electrostatic considerations in primary platelet aggrega- 248. Fox JE: The platelet cytoskeleton. Thromb Haemost 70(6):884–893, 1993.
tion. Ann N Y Acad Sci 416:693. 249. Fox JE: Platelet cytoskeleton, in Hemostasis and Thrombosis: Basic Principles and
216. Hartwig JH, et al: The elegant platelet: Signals controlling actin assembly. Thromb Clinical Practice, edited by RW Colman, J Hirsh, VJ Marder, AW Clowes, JN George,
Haemost 82:392–398, 1984, 1999. pp 429–446. Lippincott, Williams & Wilkins, Philadelphia, 2001.
217. Falet H, et al: Importance of free actin filament barbed ends for Arp2/3 complex func- 250. Zhu J, Luo BH, Xiao T, et al: Structure of a complete integrin ectodomain in a phys-
tion in platelets and fibroblasts. Proc Natl Acad Sci U S A 99(26):16782–16787, 2002. iologic resting state and activation and deactivation by applied forces. Mol Cell
218. Carlier MF, et al: Tbeta 4 is not a simple G-actin sequestering protein and interacts 32(6):849–861, 2008.
with F-actin at high concentration. J Biol Chem 271(16):9231–9239, 1996. 251. Li R, et al: Activation of integrin alphaIIbbeta3 by modulation of transmembrane
219. Lind SE, Yin HL, Stossel TP: Human platelets contain gelsolin. A regulator of actin helix associations. Science 300(5620):795–798, 2003.
filament length. J Clin Invest 69(6):1384–1387, 1982. 252. Olorundare OE, Simmons SR, Albrecht RM: Cytochalasin D and E: Effects on fibrin-
220. Barkalow K, Hartwig JH: The role of actin filament barbed-end exposure in cytoskel- ogen receptor movement and cytoskeletal reorganization in fully spread, surface-
etal dynamics and cell motility. Biochem Soc Trans 23(3):451–456, 1995. activated platelets: A correlative light and electron microscopic investigation. Blood
221. Barkalow K, et al: A-Adducin dissociates from F-actin filaments and spectrin during 79(1):99–109, 1992.
platelet activation. J Cell Biol 161:557–570, 2003. 253. White JG: Induction of patching and its reversal on surface-activated human platelets.
222. Machesky LM, Gould KL: The Arp2/3 complex: A multifunctional actin organizer. Br J Haematol 76(1):108–115, 1990.
Curr Opin Cell Biol 11(1):117–121, 1999. 254. Fox JE, et al: Identification of two proteins (actin-binding protein and P235) that are
223. Mullins RD, Heuser JA, Pollard TD: The interaction of Arp2/3 complex with actin: hydrolyzed by endogenous Ca++-dependent protease during platelet aggregation. J
Nucleation, high affinity pointed end capping, and formation of branching networks Biol Chem 260:1060–1066, 1985.
of filaments. Proc Natl Acad Sci U S A 95(11):6181–6186, 1998. 255. Fox JE, Reynolds CC, Phillips DR: Calcium-dependent proteolysis occurs during
224. Heemskerk JW, et al: Collagen but not fibrinogen surfaces induce bleb formation, platelet aggregation. J Biol Chem 258(16):9973–9981, 1983.
exposure of phosphatidylserine, and procoagulant activity of adherent platelets: Evi- 256. Fox JE, et al: Evidence that activation of platelet calpain is induced as a conse-
dence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood quence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol
90(7):2615–2625, 1997. 120(6):1501–1507, 1993.
225. Watson SP: Collagen receptor signaling in platelets and megakaryocytes. Thromb 257. Xi X, et al: Critical roles for the COOH-terminal NITY and RGT sequences of the
Haemost 82(2):365–376, 1999. integrin beta3 cytoplasmic domain in inside-out and outside-in signaling. J Cell Biol
226. Jirouskova M, Jaiswal JK, Coller BS: Ligand density dramatically affects integrin alpha 162(2):329–339, 2003.
IIb beta 3-mediated platelet signaling and spreading. Blood 109(5260):5269, 2007. 258. Flevaris P, et al: A molecular switch that controls cell spreading and retraction. J Cell
227. Coller BS, et al: Studies of activated GPIIb/IIIa receptors on the luminal surface of Biol 179(3):553–565, 2007.
adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high 259. Dachary-Prigent J, et al: Annexin V as a probe of aminophospholipid exposure and
density fibrinogen. J Clin Invest 92:2796–2806, 1999, 1993. platelet membrane vesiculation: A flow cytometry study showing a role for free sulf-
hydryl groups. Blood 81:2554–2565, 1993.
Kaushansky_chapter 112_p1829-1914.indd 1889 17/09/15 3:30 pm

