Page 214 - Williams Hematology ( PDFDrive )
P. 214

188  Part IV:  Molecular and Cellular Hematology       Chapter 13:  Cytogenetics and Genetic Abnormalities            189




                    17.  Barnes DJ, Melo JV: Cytogenetic and molecular genetic aspects of chronic myeloid leu-    48.  Udani R, Parlow M, Yin L, et al: Novel Germline CEBPA Sequence Variations in Familial
                     kaemia. Acta Haematol 108:180–202, 2002.              AML and Cytogenetically Normal AML.  American Society of Hematology Conference
                    18.  Tefferi A: Molecular drug targets in myeloproliferative neoplasms: Mutant ABL1, JAK2,   2012, Atlanta, GA, December, 2012.
                     MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 13:215–237, 2009.    49.  Pabst T, Eyholzer M, Fos J, et al: Heterogeneity within AML with CEBPA mutations;
                    19.  Adeyinka A, Dewald GW: Cytogenetics of chronic myeloproliferative disorders and   only CEBPA double mutations, but not single CEBPA mutations are associated with
                     related myelodysplastic syndromes.  Hematol Oncol Clin North Am 17:1129–1149,     favourable prognosis. Br J Cancer 100:1343–1346, 2009.
                     2003.                                                50.  Pabst T, Mueller BU: Complexity of CEBPA dysregulation in human acute myeloid leu-
                    20.  Levine RL, Pardanani A, Tefferi A, et al: Role of JAK2 in the pathogenesis and therapy   kemia. Clin Cancer Res 15:5303–5307, 2009.
                     of myeloproliferative disorders. Nat Rev Cancer 7:673–683, 2007.    51.  Renneville A, Mialou V, Philippe N, et al: Another pedigree with familial acute myeloid
                    21.  Zipperer E, Wulfert M, Germing U, et al: MPL 515 and JAK2 mutation analysis in MDS   leukemia and germline CEBPA mutation. Leukemia 23:804–806, 2009.
                     presenting with a platelet count of more than 500 x 10(9)/l. Ann Hematol 87:413–415,     52.  ACMG Board of Directors: Points to consider in the clinical application of genomic
                     2008.                                                 sequencing. Genet Med 14:759–761, 2012.
                    22.  Nangalia J, Massie CE, Baxter EJ, et al: Somatic CALR mutations in myeloproliferative     53.  Green RC, Berg JS, Grody WW, et al: ACMG recommendations for reporting of inci-
                     neoplasms with nonmutated JAK2. N Engl J Med 369:2391–2405, 2013.  dental  findings  in  clinical exome and  genome  sequencing.  Genet Med  15:565–574,
                    23.  Klampfl T, Gisslinger H, Harutyunyan AS, et al: Somatic mutations of calreticulin in   2013.
                     myeloproliferative neoplasms. N Engl J Med 369:2379–2390, 2013.    54.  Godley LA, Larson RA: Therapy-related myeloid leukemia. Semin Oncol 35:418–429,
                    24.  Vardiman JW, Thiele J, Arber DA, et al: The 2008 revision of the WHO classification   2008.
                     of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood     55.  Smith SM, Le Beau MM, Huo D, et al: Clinical-cytogenetic associations in 306 patients
                     114:937–951, 2009.                                    with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago
                    25.  Olney HJ, Le Beau MM: Evaluation of recurring cytogenetic abnormalities in the treat-  series. Blood 102:43–52, 2003.
                     ment of myelodysplastic syndromes. Leuk Res 31:427–434, 2007.    56.  Pedersen-Bjergaard J, Andersen MK, Christiansen DH: Therapy-related acute myeloid
                    26.  Greenberg PL, Tuechler H, Schanz J, et al: Revised international prognostic scoring   leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell
                     system for myelodysplastic syndromes. Blood 120:2454–2465, 2012.  transplantation. Blood 95:3273–3279, 2000.
                    27.  Nimer SD: Clinical management of myelodysplastic syndromes with interstitial dele-    57.  Lai F, Godley LA, Joslin J, et al: Transcript map and comparative analysis of the 1.5-
                     tion of chromosome 5q. J Clin Oncol 24:2576–2582, 2006.  Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a
                    28.  Tiu RV, Gondek LP, O’Keefe CL, et al: Prognostic impact of SNP array karyotyping in   del(5q). Genomics 71:235–245, 2001.
                     myelodysplastic syndromes and related myeloid malignancies. Blood 117:4552–4560,     58.  Boultwood J, Fidler C, Strickson AJ, et al: Narrowing and genomic annotation of the
                     2011.                                                 commonly deleted region of the 5q-syndrome. Blood 99:4638–4641, 2002.
                    29.  Makishima H, Maciejewski JP: Pathogenesis and consequences of uniparental disomy     59.  Joslin JM, Fernald AA, Tennant TR, et al: Haploinsufficiency of EGR1, a candidate gene
                     in cancer. Clin Cancer Res 17:3913–3923, 2011.        in the del(5q), leads to the development of myeloid disorders. Blood 110:719–726, 2007.
                    30.  Haase D, Germing U, Schanz J, et al: New insights into the prognostic impact of the     60.  Ebert BL, Pretz J, Bosco J, et al: Identification of RPS14 as a 5q− syndrome gene by RNA
                     karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124   interference screen. Nature 451:335–339, 2008.
                     patients. Blood 110:4385–4395, 2007.                 61.  Lindsley RC, Ebert BL: Molecular pathophysiology of myelodysplastic syndromes.
                    31.  Schanz J, Tuchler H, Sole F, et al: New comprehensive cytogenetic scoring system for   Annu Rev Pathol 8:21–47, 2013.
                     primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia     62.  Stoddart A, Fernald AA, Wang J, et al: Haploinsufficiency of del(5q) genes, Egr1
                     after MDS derived from an international database merge. J Clin Oncol 30:820–829,   and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood
                     2012.                                                 123:1069–1078, 2014.
                    32.  Mrozek K, Bloomfield CD: Clinical significance of the most common chromosome     63.  Harrison CJ. Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia.
                     translocations in adult acute myeloid leukemia. J Natl Cancer Inst Monogr (39):52–57,   Br J Haematol 144:147–156, 2009.
                     2008.                                                64.  Schultz KR, Pullen DJ, Sather HN, et al: Risk- and response-based classification of
                    33.  Mrozek K, Marcucci G, Paschka P, et al: Advances in molecular genetics and treatment   childhood B-precursor acute lymphoblastic leukemia: A combined analysis of prognos-
                     of core-binding factor acute myeloid leukemia. Curr Opin Oncol 20:711–718, 2008.  tic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group
                    34.  Mistry AR, Pedersen EW, Solomon E, et al: The molecular pathogenesis of acute pro-  (CCG). Blood 109:926–935, 2007.
                     myelocytic leukaemia: Implications for the clinical management of the disease. Blood     65.  Wetzler M, Dodge RK, Mrozek K, et al: Additional cytogenetic abnormalities in adults
                     Rev 17:71–97, 2003.                                   with Philadelphia chromosome–positive acute lymphoblastic leukaemia: A study of the
                    35.  Olney HJ, Mitelman F, Johansson B, et al: Unique balanced chromosome abnormalities   Cancer and Leukaemia Group B. Br J Haematol 124:275–288, 2004.
                     in treatment-related myelodysplastic syndromes and acute myeloid leukemia: Report     66.  van der Veer A, Zaliova M, Mottadelli F, et al: IKZF1 status as a prognostic feature in
                     from an international workshop. Genes Chromosomes Cancer 33:413–423, 2002.  BCR-ABL1–positive childhood ALL. Blood 123:1691–1698, 2014.
                    36.  Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia     67.  Pui CH, Chessells JM, Camitta B, et al: Clinical heterogeneity in childhood acute lym-
                     stem-cell development. Nat Rev Cancer 7:823–833, 2007.  phoblastic leukemia with 11q23 rearrangements. Leukemia 17:700–706, 2003.
                    37.  Farag SS, Archer KJ, Mrozek K, et al: Isolated trisomy of chromosomes 8, 11, 13 and 21     68.  Rubnitz JE, Downing JR, Pui CH, et al: TEL gene rearrangement in acute lympho-
                     is an adverse prognostic factor in adults with de novo acute myeloid leukemia: Results   blastic leukemia: A new genetic marker with prognostic significance. J Clin Oncol 15:
                     from Cancer and Leukemia Group B 8461. Int J Oncol 21:1041–1051, 2002.  1150–1157, 1997.
                    38.  Dohner K, Dohner H: Molecular characterization of acute myeloid leukemia. Haema-    69.  Sutcliffe MJ, Shuster JJ, Sather HN, et al: High concordance from independent studies
                     tologica 93:976–982, 2008.                            by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associ-
                    39.  Bacher U, Haferlach T, Kern W, et al: A comparative study of molecular mutations in   ating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI
                     381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid   Standard-Risk B-precursor Acute Lymphoblastic Leukemia: A Children’s Oncology
                     leukemia. Haematologica 92:744–752, 2007.             Group (COG) initiative. Leukemia 19:734–740, 2005.
                    40.  Falini B, Mecucci C, Tiacci E, et al: Cytoplasmic nucleophosmin in acute myelogenous     70.  Faderl S, Jeha S, Kantarjian HM: The biology and therapy of adult acute lymphoblastic
                     leukemia with a normal karyotype. N Engl J Med 352:254–266, 2005.  leukemia. Cancer 98:1337–1354, 2003.
                    41.  Christiansen DH, Andersen MK, Pedersen-Bjergaard J: Methylation of p15INK4B is     71.  Roberts KG, Morin RD, Zhang J, et al: Genetic alterations activating kinase and cytok-
                     common, is associated with deletion of genes on chromosome arm 7q and predicts a   ine receptor signaling in high-risk acute lymphoblastic leukemia.  Cancer Cell 22:
                     poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leuke-  153–166, 2012.
                     mia 17:1813–1819, 2003.                              72.  Graux C, Cools J, Michaux L, et al: Cytogenetics and molecular genetics of T-cell acute
                    42.  Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult   lymphoblastic leukemia: From thymocyte to lymphoblast.  Leukemia 20:1496–1510,
                     de novo acute myeloid leukemia. N Engl J Med 368:2059–2074, 2013.  2006.
                    43.  Patel JP, Gonen M, Figueroa ME, et al: Prognostic relevance of integrated genetic pro-    73.  Caporaso N, Goldin L, Plass C, et al: Chronic lymphocytic leukaemia genetics over-
                     filing in acute myeloid leukemia. N Engl J Med 366:1079–1089, 2012.  view. Br J Haematol 139:630–634, 2007.
                    44.  Churpek JE, Lorenz R, Nedumgottil S, et al: Proposal for the clinical detection and     74.  Hagenkord JM, Monzon FA, Kash SF, et al: Array-based karyotyping for prognostic
                     management of patients and their family members with familial myelodysplastic    assessment in chronic lymphocytic leukemia: Performance comparison of Affymetrix
                     syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma 54:28–35, 2013.  10K2.0, 250K Nsp, and SNP6.0 arrays. J Mol Diagn 12:184–196, 2010.
                    45.  Nickels EM, Soodalter J, Churpek JE, et al: Recognizing familial myeloid leukemia in     75.  Zenz T, Mertens D, Dohner H, et al: Molecular diagnostics in chronic lymphocytic
                     adults. Ther Adv Hematol 4:254–269, 2013.             leukemia-pathogenetic and clinical implications. Leuk Lymphoma 49:864–873, 2008.
                    46.  West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leuke-    76.  Crespo M, Bosch F, Villamor N, et al: ZAP-70 expression as a surrogate for immu-
                     mia syndromes: A review and utility for translational investigations. Ann N Y Acad Sci   noglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med
                     1310:111–118, 2014.                                   348:1764–1775, 2003.
                    47.  Taskesen E, Bullinger L, Corbacioglu A, et al: Prognostic impact, concurrent genetic     77.  Morilla A, Gonzalez de Castro D, Del Giudice I, et al: Combinations of ZAP-70, CD38
                     mutations, and gene expression features of AML with CEBPA mutations in a cohort   and IGHV mutational status as predictors of time to first treatment in CLL. Leuk Lym-
                     of 1182 cytogenetically normal AML patients: Further evidence for CEBPA double   phoma 49:2108–2115, 2008.
                     mutant AML as a distinctive disease entity. Blood 117:2469–2475, 2011.    78.  Campbell LJ: Cytogenetics of lymphomas. Pathology 37:493–507, 2005.







          Kaushansky_chapter 13_p0173-0190.indd   189                                                                   17/09/15   6:33 pm
   209   210   211   212   213   214   215   216   217   218   219