Page 227 - Williams Hematology ( PDFDrive )
P. 227
202 Part IV: Molecular and Cellular Hematology
65. Steiner M, Hochreiter D, Kasper DC, et al: Asparagine and aspartic acid concentra- 93. Liu W, Le A, Hancock C, et al: Reprogramming of proline and glutamine metabolism
tions in bone marrow versus peripheral blood during Berlin-Frankfurt-Munster-based contributes to the proliferative and metabolic responses regulated by oncogenic tran-
induction therapy for childhood acute lymphoblastic leukemia. Leuk Lymphoma scription factor c-MYC. Proc Natl Acad Sci U S A 109:8983–8988, 2012.
53:1682–1687, 2012. 94. Le A, Cooper CR, Gouw AM, et al: Inhibition of lactate dehydrogenase A induces oxi-
66. Ehsanipour EA, Sheng X, Behan JW, et al: Adipocytes cause leukemia cell resistance to dative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042,
L-asparaginase via release of glutamine. Cancer Res 73:2998–3006, 2013. 2010.
67. Abdel-Wahab O, Levine RL: Metabolism and the leukemic stem cell. J Exp Med 207: 95. Liu YC, Li F, Handler J, et al: Global regulation of nucleotide biosynthetic genes by
677–680, 2010. c-Myc. PLoS One 3:e2722, 2008.
68. Samudio I, Harmancey R, Fiegl M, et al: Pharmacologic inhibition of fatty acid oxida- 96. Mannava S, Grachtchouk V, Wheeler LJ, et al: Direct role of nucleotide metabolism in
tion sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120:142–156, C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7:2392–2400, 2008.
2010. 97. Cunningham JT, Moreno MV, Lodi A, et al: Protein and nucleotide biosynthesis are
69. Lagadinou ED, Sach A, Callahan K, et al: BCL-2 inhibition targets oxidative phospho- coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157:1088–1103,
rylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2014.
12:329–341, 2013. 98. Calvo-Vidal MN, Cerchietti L: The metabolism of lymphomas. Curr Opin Hematol
70. Small D: Targeting FLT3 for the treatment of leukemia. Semin Hematol 45:S17–S21, 20:345–354, 2013.
2008. 99. Mathews CK: DNA precursor metabolism and genomic stability. FASEB J 20:
71. Zheng R, Small D: Mutant FLT3 signaling contributes to a block in myeloid differenti- 1300–1314, 2006.
ation. Leuk Lymphoma 46:1679–1687, 2005. 100. Song S, Pursell ZF, Copeland WC, et al: DNA precursor asymmetries in mammalian
72. Scotland S, Saland E, Skuli N, et al: Mitochondrial energetic and AKT status medi- tissue mitochondria and possible contribution to mutagenesis through reduced repli-
ate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia cation fidelity. Proc Natl Acad Sci U S A 102:4990–4995, 2005.
27:2129–2138, 2013. 101. Austin WR, Armijo AL, Campbell DO, et al: Nucleoside salvage pathway kinases regu-
73. Chen WL, Wang JH, Zhao AH, et al: A distinct glucose metabolism signature of acute late hematopoiesis by linking nucleotide metabolism with replication stress. J Exp Med
myeloid leukemia with prognostic value. Blood 124:1645–1654, 2014. 209:2215–2228, 2012.
74. Yan H, Parsons DW, Jin G, et al: IDH1 and IDH2 mutations in gliomas. N Engl J Med 102. Bello-Fernandez C, Packham G, Cleveland JL: The ornithine decarboxylase gene is a
360:765–773, 2009. transcriptional target of c-Myc. Proc Natl Acad Sci U S A 90:7804–7808, 1993.
75. Mardis ER, Ding L, Dooling DJ, et al: Recurring mutations found by sequencing an 103. Nilsson JA, Keller UB, Baudino TA, et al: Targeting ornithine decarboxylase in Myc-
acute myeloid leukemia genome. N Engl J Med 361:1058–1066, 2009. induced lymphomagenesis prevents tumor formation. Cancer Cell 7:433–444, 2005.
76. Dang L, White DW, Gross S, et al: Cancer-associated IDH1 mutations produce 104. Scuoppo C, Miething C, Lindqvist L, et al: A tumour suppressor network relying on the
2-hydroxyglutarate. Nature 465:966, 2010. polyamine-hypusine axis. Nature 487:244–248, 2012.
77. Gross S, Cairns RA, Minden MD, et al: Cancer-associated metabolite 2-hydroxygluta- 105. Monti S, Savage KJ, Kutok JL, et al: Molecular profiling of diffuse large B-cell lymphoma
rate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 identifies robust subtypes including one characterized by host inflammatory response.
mutations. J Exp Med 207:339–344, 2010. Blood 105:1851–1861, 2005.
78. Losman JA, Looper RE, Koivunen P, et al: (R)-2-hydroxyglutarate is sufficient to pro- 106. Caro P, Kishan AU, Norberg E, et al: Metabolic signatures uncover distinct targets in
mote leukemogenesis and its effects are reversible. Science 339:1621–1625, 2013. molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22:547–560, 2012.
79. Koivunen P, Lee S, Duncan CG, et al: Transformation by the (R)-enantiomer of 107. Zirath H, Frenzel A, Oliynyk G, et al: MYC inhibition induces metabolic changes
2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488, 2012. leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A
80. Figueroa ME, Abdel-Wahab O, Lu C, et al: Leukemic IDH1 and IDH2 mutations result 110:10258–10263, 2013.
in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic 108. Eberlin LS, Gabay M, Fan AC, et al: Alteration of the lipid profile in lymphomas
differentiation. Cancer Cell 18:553–567, 2010. induced by MYC overexpression. Proc Natl Acad Sci U S A 111:10450–10455, 2014.
81. Cairns RA, Iqbal J, Lemonnier F, et al: IDH2 mutations are frequent in angioimmuno- 109. Arias-Mendoza F, Payne GS, Zakian K, et al: Noninvasive phosphorus magnetic res-
blastic T-cell lymphoma. Blood 119:1901–1903, 2012. onance spectroscopic imaging predicts outcome to first-line chemotherapy in newly
82. Schmitz R, Young RM, Ceribelli M, et al: Burkitt lymphoma pathogenesis and thera- diagnosed patients with diffuse large B-cell lymphoma. Acad Radiol 20:1122–1129,
peutic targets from structural and functional genomics. Nature 490:116–120, 2012. 2013.
83. Pasqualucci L, Khiabanian H, Fangazio M, et al: Genetics of follicular lymphoma trans- 110. Lindsley RC, LaCasce AS: Biology of double-hit B-cell lymphomas. Curr Opin Hematol
formation. Cell Rep 6:130–140, 2014. 19:299–304, 2012.
84. Dominguez-Sola D, Dalla-Favera R: Burkitt lymphoma: Much more than MYC. Cancer 111. Affer M, Chesi M, Chen WD, et al: Promiscuous MYC locus rearrangements hijack
Cell 22:141–142, 2012. enhancers but mostly super-enhancers to dysregulate MYC expression in multiple mye-
85. Schneider C, Pasqualucci L, Dalla-Favera R: Molecular pathogenesis of diffuse large loma. Leukemia 28:1725–1735, 2014.
B-cell lymphoma. Semin Diagn Pathol 28:167–177, 2011. 112. Kuehl WM, Bergsagel PL: Molecular pathogenesis of multiple myeloma and its prema-
86. Kostakoglu L, Cheson BD: Current role of FDG PET/CT in lymphoma. Eur J Nucl Med lignant precursor. J Clin Invest 122:3456–3463, 2012.
Mol Imaging 41:1004–1027, 2014. 113. Agarwal A, Chirindel A, Shah BA, Subramaniam RM: Evolving role of FDG PET/CT in
87. Alvarez Paez AM, Nogueiras Alonso JM, Serena Puig A: 18F-FDG-PET/CT in lym- multiple myeloma imaging and management. AJR Am J Roentgenol 200:884–890, 2013.
phoma: Two decades of experience. Rev Esp Med Nucl Imagen Mol 31:340–349, 2012. 114. McBrayer SK, Cheng JC, Singhal S, et al: Multiple myeloma exhibits novel dependence
88. Chan FH, Carl D, Lyckholm LJ: Severe lactic acidosis in a patient with B-cell lym- on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed ther-
phoma: A case report and review of the literature. Case Rep Med 2009:534561, 2009. apy. Blood 119:4686–4697, 2012.
89. Friedenberg AS, Brandoff DE, Schiffman FJ: Type B lactic acidosis as a severe metabolic 115. Fujiwara S, Kawano Y, Yuki H, et al: PDK1 inhibition is a novel therapeutic target in
complication in lymphoma and leukemia: A case series from a single institution and multiple myeloma. Br J Cancer 108:170–178, 2013.
literature review. Medicine (Baltimore) 86:225–232, 2007. 116. Cea M, Cagnetta A, Fulciniti M, et al: Targeting NAD+ salvage pathway induces
90. Doherty JR, Yang C, Scott KE, et al: Blocking lactate export by inhibiting the Myc target autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated
MCT1 Disables glycolysis and glutathione synthesis. Cancer Res 74:908–920, 2014. kinase (ERK1/2) inhibition. Blood 120:3519–3529, 2012.
91. Bhatt AP, Jacobs SR, Freemerman AJ, et al: Dysregulation of fatty acid synthesis and gly- 117. Cagnetta A, Cea M, Calimeri T, et al: Intracellular NAD(+) depletion enhances borte-
colysis in non-Hodgkin lymphoma. Proc Natl Acad Sci U S A 109:11818–11823, 2012. zomib-induced anti-myeloma activity. Blood 122:1243–1255, 2013.
92. Dutta P, Le A, Vander Jagt DL, et al: Evaluation of LDH-A and glutaminase inhibition
in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors.
Cancer Res 73:4190–4195, 2013.
Kaushansky_chapter 14_p0191-0202.indd 202 17/09/15 6:36 pm

