Page 331 - Williams Hematology ( PDFDrive )
P. 331

306            Part IV:  Molecular and Cellular Hematology                                                                                                                                                  <CN>:  <ct>             PB




                 80.  Dostert C, Petrilli V, Van Bruggen R, et al: Innate immune activation through Nalp3     113. Cella M, Jarrossay D, Facchetti F, et al: Plasmacytoid monocytes migrate to inflamed
                  inflammasome sensing of asbestos and silica. Science 320:674, 2008.  lymph nodes and produce large amounts of type I interferon. Nat Med 5:919, 1999.
                 81.  Pelegrin P, Barroso-Gutierrez C, Surprenant A: P2X7 receptor differentially couples to     114. Lewis PA, Loomis D: The formation of anti-sheep hemolytic amboceptor in the normal
                  distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147, 2008.  and tuberculous guinea pig. J Exp Med 40:503, 1924.
                 82.  Girardin SE, Boneca IG, Carneiro LA, et al: Nod1 detects a unique muropeptide from     115. Freund J, McDermott K: Sensitization to horse serum by means of adjuvants. Proc Soc
                  Gram-negative bacterial peptidoglycan. Science 300:1584, 2003.  Exp Biol Med 49:548, 1942.
                 83.  Girardin SE, Boneca IG, Viala J, et al: Nod2 is a general sensor of peptidoglycan through     116. Condie RM, Zak SJ, Good RA: Effect of meningococcal endotoxin on the immune
                  muramyl dipeptide (MDP) detection. J Biol Chem 278:8869, 2003.  response. Proc Soc Exp Biol Med 90:355, 1955.
                 84.  Girardin SE, Travassos LH, Herve M, et al: Peptidoglycan molecular requirements     117. Skidmore BJ, Chiller JM, Morrison DC, Weigle WO: Immunologic properties of bacte-
                  allowing detection by Nod1 and Nod2. J Biol Chem 278:41702, 2003.  rial lipopolysaccharide (LPS): Correlation between the mitogenic, adjuvant, and immu-
                 85.  Hsu LC, Ali SR, McGillivray S, et al: A NOD2-NALP1 complex mediates caspase-1-   nogenic activities. J Immunol 114:770, 1975.
                  dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl     118. Germain RN, Jenkins MK: In vivo antigen presentation. Curr Opin Immunol 16:120,
                  dipeptide. Proc Natl Acad Sci U S A 105:7803, 2008.    2004.
                 86.  Loo YM, Gale M Jr: Immune signaling by RIG-I-like receptors. Immunity 34:680, 2011.    119. Borriello F, Sethna MP, Boyd SD, et al: B7-1 and B7-2 have overlapping, critical roles in
                 87.  Saito T, Hirai R, Loo YM, et al: Regulation of innate antiviral defenses through a shared   immunoglobulin class switching and germinal center formation. Immunity 6:303, 1997.
                  repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104:582, 2007.    120. Yamamoto M, Sato S, Hemmi H, et al: Role of adaptor TRIF in the MyD88-independent
                 88.  Takahasi K, Yoneyama M, Nishihori T, et al: Nonself RNA-sensing mechanism of RIG-I   Toll-like receptor signaling pathway. Science 301:640, 2003.
                  helicase and activation of antiviral immune responses. Mol Cell 29:428, 2008.    121. Gavin AL, Hoebe K, Duong B, et al: Adjuvant-enhanced antibody responses in the
                 89.  Pippig DA, Hellmuth JC, Cui S, et al: The regulatory domain of the RIG-I family   absence of Toll-like receptor signaling. Science 314:1936, 2006.
                  ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37:2014, 2009.    122. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW: Genetic and environmental
                 90.  Rothenfusser S, Goutagny N, Diperna G, et al: The RNA helicase Lgp2 inhibits   influences on premature death in adult adoptees. N Engl J Med 318:727, 1988.
                  TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immu-    123. Smirnova I, Mann N, Dols A, et al: Assay of locus-specific genetic load implicates rare
                  nol 175:5260, 2005.                                    Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci U S A
                 91.  Venkataraman T, Valdes M, Elsby R, et al: Loss of DExD/H box RNA helicase LGP2   100:6075, 2003.
                  manifests disparate antiviral responses. J Immunol 178:6444, 2007.    124. Hawn TR, Verbon A, Lettinga KD, et al: A common dominant TLR5 stop codon poly-
                 92.  Satoh T, Kato H, Kumagai Y, et al: LGP2 is a positive regulator of RIG-I- and MDA5-  morphism abolishes flagellin signaling and is associated with susceptibility to Legion-
                  mediated antiviral responses. Proc Natl Acad Sci U S A 107:1512, 2010.  naires’ disease. J Exp Med 198:1563, 2003.
                 93.  Gitlin L, Barchet W, Gilfillan S, et al: Essential role of mda-5 in type I IFN responses to     125. Picard C, Puel A, Bonnet M, et al: Pyogenic bacterial infections in humans with IRAK-4
                  polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc   deficiency. Science 299:2076, 2003.
                  Natl Acad Sci U S A 103:8459, 2006.                   126. Zhang SY, Jouanguy E, Ugolini S, et al: TLR3 deficiency in patients with herpes simplex
                 94.  Hornung V, Ellegast J, Kim S, et al: 5′-Triphosphate RNA is the ligand for RIG-I. Science   encephalitis. Science 317:1522, 2007.
                  314:994, 2006.                                        127. Casrouge  A,  Zhang  SY,  Eidenschenk  C,  et  al:  Herpes  simplex  virus  encephalitis  in
                 95.  Pichlmair A, Schulz O, Tan CP, et al: RIG-I-mediated antiviral responses to sin-  human UNC-93B deficiency. Science 314:308, 2006.
                  gle-stranded RNA bearing 5′-phosphates. Science 314:997, 2006.    128. Jouanguy E, Altare F, Lamhamedi S, et al: Interferon-gamma-receptor deficiency in an
                 96.  Kawai T, Takahashi K, Sato S, et al: IPS-1, an adaptor triggering RIG-I- and Mda5-  infant with fatal bacille Calmette-Guerin infection. N Engl J Med 335:1956, 1996.
                  mediated type I interferon induction. Nat Immunol 6:981, 2005.    129. Picard C, Fieschi C, Altare F, et al: Inherited interleukin-12 deficiency: IL12B genotype
                 97.  Seth RB, Sun L, Ea CK, Chen ZJ: Identification and characterization of MAVS, a mito-  and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet Hum Genet
                  chondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669,   70:336, 2002.
                  2005.                                                 130. Altare F, Durandy A, Lammas D, et al: Impairment of mycobacterial immunity in
                 98.  Xu LG, Wang YY, Han KJ, et al: VISA is an adapter protein required for virus-triggered   human interleukin-12 receptor deficiency. Science 280:1432, 1998.
                  IFN-beta signaling. Mol Cell 19:727, 2005.            131. De Jong R, Altare F, Haagen IA, et al: Severe mycobacterial and Salmonella infections in
                 99.  Meylan E, Curran J, Hofmann K, et al: Cardif is an adaptor protein in the RIG-I antiviral   interleukin-12 receptor-deficient patients. Science 280:1435, 1998.
                  pathway and is targeted by hepatitis C virus. Nature 437:1167, 2005.    132. Barbosa MD, Nguyen QA, Tchernev VT, et al: Identification of the homologous beige
                 100. Hou F, Sun L, Zheng H, et al: MAVS forms functional prion-like aggregates to activate   and Chediak-Higashi syndrome genes. Nature 382:262, 1996.
                  and propagate antiviral innate immune response. Cell 146:448, 2011.    133. Royer-Pokora B, Kunkel LM, Monaco AP, et al: Cloning the gene for an inherited
                 101. Sun L, Wu J, Du F, et al: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that   human disorder—chronic granulomatous disease—on the basis of its chromosomal
                  activates the type I interferon pathway. Science 339:786, 2013.  location. Nature 322:32, 1986.
                 102. Wu J, Sun L, Chen X, et al: Cyclic GMP-AMP is an endogenous second messenger in     134. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al: Chromatin-IgG complexes activate B
                  innate immune signaling by cytosolic DNA. Science 339:826, 2013.  cells by dual engagement of IgM and Toll-like receptors. Nature 416:603, 2002.
                 103. Ishikawa H, Barber GN: STING is an endoplasmic reticulum adaptor that facilitates     135. Crozat K, Hoebe K, Ugolini S, et al: Jinx, an MCMV susceptibility phenotype caused by
                  innate immune signalling. Nature 455:674, 2008.        disruption of Unc13d: A mouse model of type 3 familial hemophagocytic lymphohisti-
                 104. Takaoka A, Wang Z, Choi MK, et al: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and   ocytosis. J Exp Med 204:853, 2007.
                  an activator of innate immune response. Nature 448:501, 2007.    136. Croker BA, Lawson BR, Berger M, et al: Inflammation and autoimmunity caused by a
                 105. Wang  Z,  Choi  MK,  Ban  T,  et  al:  Regulation  of  innate  immune  responses  by  DAI   SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc Natl Acad Sci U
                  (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci U S A 105:5477,   S A 105:15028, 2008.
                  2008.                                                 137. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, et al: Mal (MyD88-adapter-like) is
                 106. Zeng M, Hu Z, Shi X, et al: MAVS, cGAS, and endogenous retroviruses in T-independent   required for Toll-like receptor-4 signal transduction. Nature 413:78, 2001.
                  B cell responses. Science 346:1486, 2014.             138. Horng T, Barton GM, Medzhitov R: TIRAP: An adapter molecule in the Toll signaling
                 107. Beutler  B,  Milsark  IW, Cerami  AC:  Passive immunization  against cachectin/tumor   pathway. Nat Immunol 2:835, 2001.
                  necrosis factor protects mice from lethal effect of endotoxin. Science 229:869, 1985.        139. Yamamoto M, Sato S, Hemmi H, et al: Essential role for TIRAP in activation of the
                 108. Georgel P, Naitza S, Kappler C, et al: Drosophila immune deficiency (IMD) is a death   signalling cascade shared by TLR2 and TLR4. Nature 420:324, 2002.
                  domain protein that activates antibacterial defense and can promote apoptosis. Dev Cell     140. Poltorak A, Smirnova I, He XL, et al: Genetic and physical mapping of the Lps locus-
                  1:503, 2001.                                           identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells
                 109. Orange JS, Biron CA: Characterization of early IL-12, IFN-alpha/beta, and TNF effects   Mol Dis 24:340, 1998.
                  on antiviral state and NK cell responses during murine cytomegalovirus infection.     141. Takeuchi O, Kawai T, Muhlradt PF, et al: Discrimination of bacterial lipoproteins by
                   J Immunol 156:4746, 1996.                             Toll-like receptor 6. Int Immunol 13:933, 2001.
                 110. Andrews DM, Scalzo AA, Yokoyama WM, et al: Functional interactions between den-    142. Hemmi H, Kaisho T, Takeuchi O, et al: Small anti-viral compounds activate immune
                  dritic cells and NK cells during viral infection. Nat Immunol 4:175, 2003.  cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196, 2002.
                 111. Mancuso G, Midiri A, Biondo C, et al: Type I IFN signaling is crucial for host resistance     143. Jurk M, Heil F, Vollmer J, et al: Human TLR7 or TLR8 independently confer responsive-
                  against different species of pathogenic bacteria. J Immunol 178:3126, 2007.  ness to the antiviral compound R-848. Nat Immunol 3:499, 2002.
                 112. Karaghiosoff M, Steinborn R, Kovarik P, et al: Central role for type I interferons and     144. Chuang T, Ulevitch RJ: Identification of hTLR10: A novel human Toll-like receptor
                  Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 4:471, 2003.  preferentially expressed in immune cells. Biochim Biophys Acta 1518:157, 2001.















          Kaushansky_chapter 20_p0293-0306.indd   306                                                                   9/17/15   5:52 PM
   326   327   328   329   330   331   332   333   334   335   336