Page 330 - Williams Hematology ( PDFDrive )
P. 330

304  Part IV:  Molecular and Cellular Hematology                              Chapter 20:  Innate Immunity            305




                    13.  Hayashi F, Smith KD, Ozinsky A, et al: The innate immune response to bacterial     47.  Tseng PH, Matsuzawa A, Zhang W, et al: Different modes of ubiquitination of the adap-
                     flagellin is mediated by Toll- like receptor 5. Nature 410:1099, 2001.  tor TRAF3 selectively activate the expression of type I interferons and proinflammatory
                    14.  Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded   cytokines. Nat Immunol 11:70, 2010.
                     RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732, 2001.    48.  Chen ZJ: Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7:758, 2005.
                    15.  Poltorak A, Ricciardi-Castagnoli P, Citterio A, Beutler B: Physical contact between     49.  West AP, Brodsky IE, Rahner C, et al: TLR signalling augments macrophage bacteri-
                     LPS and Tlr4 revealed by genetic complementation. Proc Natl Acad Sci U S A 97:2163,     cidal activity through mitochondrial ROS. Nature 472:476, 2011.
                     2000.                                                50.  Waterfield M, Jin W, Reiley W, et al: IkappaB kinase is an essential component of the
                    16.  Bauer S, Kirschning CJ, Hacker H, et al: Human TLR9 confers responsiveness to bacte-  Tpl2 signaling pathway. Mol Cell Biol 24:6040, 2004.
                     rial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237,     51.  Beinke S, Deka J, Lang V, et al: NF-kappaB1 p105 negatively regulates TPL-2 MEK
                     2001.                                                 kinase activity. Mol Cell Biol 23:4739, 2003.
                    17.  Gross O, Gewies A, Finger K, et al: Card9 controls a non-TLR signalling pathway for     52.  Fitzgerald KA, McWhirter SM, Faia KL, et al: IKKepsilon and TBK1 are essential com-
                     innate anti-fungal immunity. Nature 442:651, 2006.    ponents of the IRF3 signaling pathway. Nat Immunol 4:491, 2003.
                    18.  Rogers NC, Slack EC, Edwards AD, et al: Syk-dependent cytokine induction by Dec-    53.  Sato S, Sugiyama M, Yamamoto M, et al: Toll/IL-1 receptor domain-containing adap-
                     tin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507,   tor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and
                     2005.                                                 TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B
                    19.  Gantner BN, Simmons RM, Canavera SJ, et al: Collaborative induction of inflammatory   and IFN-regulatory factor-3, in the Toll-like receptor signaling.  J Immunol 171:4304,
                     responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107, 2003.  2003.
                    20.  Rallabhandi P, Nhu QM, Toshchakov VY, et al: Analysis of proteinase-activated recep-    54.  Kawasaki T, Takemura N, Standley DM, et al: The second messenger phosphatidyli-
                     tor 2 and TLR4 signal transduction: A novel paradigm for receptor cooperativity. J Biol   nositol-5-phosphate facilitates antiviral innate immune signaling.  Cell Host Microbe
                     Chem 283:24314, 2008.                                 14:148, 2013.
                    21.  Wright SD, Ramos RA, Tobias PS, et al: CD14, a receptor for complexes of lipopolysac-    55.  Ordureau A, Enesa K, Nanda S, et al: DEAF1 is a Pellino1-interacting protein required
                     charide (LPS) and LPS binding protein. Science 249:1431, 1990.  for interferon  production by Sendai  virus and double-stranded RNA.  J Biol Chem
                    22.  Haziot A, Ferrero E, Kontgen F, et al: Resistance to endotoxin shock and reduced dis-  288:24569, 2013.
                     semination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407, 1996.    56.  Kawai T, Sato S, Ishii KJ, et al: Interferon-alpha induction through Toll-like receptors
                    23.  Hoebe K, Georgel P, Rutschmann S, et al: CD36 is a sensor of diacylglycerides. Nature   involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5:1061,
                     433:523, 2005.                                        2004.
                    24.  Nagai Y, Akashi S, Nagafuku M, et al: Essential role of MD-2 in LPS responsiveness and     57.  Shinohara ML, Lu L, Bu J, et al: Osteopontin expression is essential for interferon-alpha
                     TLR4 distribution. Nat Immunol 3:667, 2002.           production by plasmacytoid dendritic cells. Nat Immunol 7:498, 2006.
                    25.  Xu Y, Tao X, Shen B, et al: Structural basis for signal transduction by the Toll/interleukin-1     58.  Negishi H, Fujita Y, Yanai H, et al: Evidence for licensing of IFN-gamma-induced IFN
                     receptor domains. Nature 408:111, 2000.               regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene
                    26.  Kim HM, Park BS, Kim JI, et al: Crystal structure of the TLR4-MD-2 complex with   induction program. Proc Natl Acad Sci U S A 103:15136, 2006.
                     bound endotoxin antagonist Eritoran. Cell 130:906, 2007.    59.  Honda K, Ohba Y, Yanai H, et al: Spatiotemporal regulation of MyD88-IRF-7 signalling
                    27.  Ohto U, Fukase K, Miyake K, Satow Y: Crystal structures of human MD-2 and its com-  for robust type-I interferon induction. Nature 434:1035, 2005.
                     plex with antiendotoxic lipid IVa. Science 316:1632, 2007.    60.  Hoebe K, Janssen EM, Kim SO, et al: Upregulation of costimulatory molecules induced
                    28.  Jin MS, Kim SE, Heo JY, et al: Crystal structure of the TLR1-TLR2 heterodimer induced   by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and
                     by binding of a tri-acylated lipopeptide. Cell 130:1071, 2007.  Trif-independent pathways. Nat Immunol 4:1223, 2003.
                    29.  Liu L, Botos I, Wang Y, et al: Structural basis of Toll-like receptor 3 signaling with       61.  Kaisho T: Type I interferon production by nucleic acid-stimulated dendritic cells. Front
                     double-stranded RNA. Science 320:379, 2008.           Biosci 13:6034, 2008.
                    30.  Ahmad-Nejad P, Hacker H, Rutz M, et al: Bacterial CpG-DNA and lipopolysaccharides     62.  Chang M, Jin W, Sun SC: Peli1 facilitates TRIF-dependent Toll-like receptor signaling
                     activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 32:1958,   and proinflammatory cytokine production. Nat Immunol 10:1089, 2009.
                     2002.                                                63.  Kobayashi K, Hernandez LD, Galan JE, et al: IRAK-M is a negative regulator of Toll-like
                    31.  Tabeta K, Hoebe K, Janssen EM, et al: The Unc93b1 mutation 3d disrupts exogenous   receptor signaling. Cell 110:191, 2002.
                     antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 7:156,     64.  Kinjyo  I,  Hanada  T,  Inagaki-Ohara  K,  et  al:  SOCS1/JAB  is  a  negative  regulator  of
                     2006.                                                 LPS-induced macrophage activation. Immunity 17:583, 2002.
                    32.  Kim YM, Brinkmann MM, Paquet ME, Ploegh HL: UNC93B1 delivers nucleotide-    65.  Ye Z, Ting JP: NLR, the nucleotide-binding domain leucine-rich repeat containing gene
                     sensing Toll-like receptors to endolysosomes. Nature 452:234, 2008.  family. Curr Opin Immunol 20:3, 2008.
                    33.  Takahashi K, Shibata T, Akashi-Takamura S, et al: A protein associated with Toll-like     66.  Hugot JP, Chamaillard M, Zouali H, et al: Association of NOD2 leucine-rich repeat
                     receptor (TLR) 4 (PRAT4A) is required for TLR-dependent immune responses. J Exp   variants with susceptibility to Crohn’s disease. Nature 411:599, 2001.
                     Med 204:2963, 2007.                                  67.  Miceli-Richard C, Lesage S, Rybojad M, et al: CARD15 mutations in Blau syndrome.
                    34.  Yang Y, Liu B, Dai J, et al: Heat shock protein gp96 is a master chaperone for Toll-like   Nat Genet 29:19, 2001.
                     receptors and is important in the innate function of macrophages. Immunity 26:215,     68.  Hoffman HM, Mueller JL, Broide DH, et al: Mutation of a new gene encoding a putative
                     2007.                                                 pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells
                    35.  Ewald SE, Lee BL, Lau L, et al: The ectodomain of Toll-like receptor 9 is cleaved to   syndrome. Nat Genet 29:301, 2001.
                     generate a functional receptor. Nature 456:658, 2008.    69.  Feldmann J, Prieur AM, Quartier P, et al: Chronic infantile neurological cutaneous and
                    36.  Park B, Brinkmann MM, Spooner E, et al: Proteolytic cleavage in an endolysosomal   articular syndrome is caused by mutations in CIAS1, a gene highly expressed in poly-
                     compartment is required for activation of Toll-like receptor 9. Nat Immunol 9:1407,   morphonuclear cells and chondrocytes. Am J Hum Genet Hum Genet 71:198, 2002.
                     2008.                                                70.  Neven B, Callebaut I, Prieur AM, et al: Molecular basis of the spectral expression of
                    37.  Blasius AL, Arnold CN, Georgel P, et al: Slc15a4, AP-3, and Hermansky-Pudlak syn-  CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disor-
                     drome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic   ders CINCA/NOMID, MWS, and FCU. Blood 103:2809, 2004.
                     cells. Proc Natl Acad Sci U S A 107:19973, 2010.     71.  The International FMF Consortium: Ancient missense mutations in a new member
                    38.  Sasai M, Linehan MM, Iwasaki A: Bifurcation of Toll-like receptor 9 signaling by adap-  of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797,
                     tor protein 3. Science 329:1530, 2010.                1997.
                    39.  Beutler B, Jiang Z, Georgel P, et al: Genetic analysis of host resistance: Toll-Like receptor     72.  Wise CA, Gillum JD, Seidman CE, et al: Mutations in CD2BP1 disrupt binding to PTP
                     signaling and immunity at large. Annu Rev Immunol 24:353, 2006.  PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum
                    40.  Kawai T, Akira S: TLR signaling. Semin Immunol 19:24, 2007.  Mol Genet 11:961, 2002.
                    41.  Yamamoto M, Sato S, Hemmi H, et al: TRAM is specifically involved in the Toll-like     73.  Miao EA, Andersen-Nissen E, Warren SE, Aderem A: TLR5 and Ipaf: Dual sensors of
                     receptor 4-mediated MyD88-independent signaling pathway.  Nat  Immunol 4:1144,   bacterial flagellin in the innate immune system. Semin Immunopathol 29:275, 2007.
                     2003.                                                74.  Boyden ED, Dietrich WF: Nalp1b controls mouse macrophage susceptibility to anthrax
                    42.  Hoebe K, Du X, Georgel P, et al: Identification of Lps2 as a key transducer of   lethal toxin. Nat Genet 38:240, 2006.
                     MyD88-independent TIR signaling. Nature 424:743, 2003.    75.  Bruey JM, Bruey-Sedano N, Luciano F, et al: Bcl-2 and Bcl-XL regulate proinflamma-
                    43.  Takeuchi O, Hoshino K, Akira S: Cutting edge: TLR2-deficient and MyD88-deficient   tory caspase-1 activation by interaction with NALP1. Cell 129:45, 2007.
                     mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392,     76.  Martinon F, Agostini L, Meylan E, Tschopp J: Identification of bacterial muramyl
                     2000.                                                 dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14:1929, 2004.
                    44.  von Bernuth H, Picard C, Jin Z, et al: Pyogenic bacterial infections in humans with     77.  Mariathasan S, Newton K, Monack DM, et al: Differential activation of the inflam-
                     MyD88 deficiency. Science 321:691, 2008.              masome by caspase-1 adaptors ASC and Ipaf. Nature 430:213, 2004.
                    45.  Lin SC, Lo YC, Wu H: Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/    78.  Cassel SL, Eisenbarth SC, Iyer SS, et al: The Nalp3 inflammasome is essential for the
                     IL-1R signalling. Nature 465:885, 2010.               development of silicosis. Proc Natl Acad Sci U S A 105:9035, 2008.
                    46.  Oshiumi H, Matsumoto M, Funami K, et al: TICAM-1, an adaptor molecule that     79.  Eisenbarth SC, Colegio OR, O’Connor W, et al: Crucial role for the Nalp3 inflam-
                     participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol   masome in the immunostimulatory properties of aluminium adjuvants.  Nature
                     4:161, 2003.                                          453:1122, 2008.







          Kaushansky_chapter 20_p0293-0306.indd   305                                                                   9/17/15   5:52 PM
   325   326   327   328   329   330   331   332   333   334   335