Page 376 - Williams Hematology ( PDFDrive )
P. 376

350  Part V:  Therapeutic Principles        Chapter 22:  Pharmacology and  Toxicity of  Antineoplastic Drugs          351




                    253. Roche-Lestienne C, Laï, JL, Darré S, et al: A mutation conferring resistance to ima-    284. Mitsiades N, Mitsiades CS, Poulaki V, et al: Molecular sequelae of proteasome inhibi-
                     tinib at the time of diagnosis of chronic myelogenous leukemia. N Engl J Med 348:   tion in human multiple myeloma cells. Proc Natl Acad Sci U S A 99:14374–14379, 2002.
                     2265–2266, 2003.                                     285. Mitsiades N, Mitsiades CS, Poulaki V, et al: Apoptotic signaling induced by immuno-
                    254. Cortes JE, Kantarjian HM, Brümmendorf TH, et al: Safety and efficacy of bosutinib   modulatory thalidomide analogs in human multiple myeloma cells: Therapeutic impli-
                     (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leuke-  cations. Blood 99:4525–4530, 2002.
                     mia patients with resistance or intolerance to imatinib. Blood 118:4567–4576, 2011.    286. Mitsiades N, Mitsiades CS, Richardson PG, et al: The proteasome inhibitor PS-341
                    255. Kantarjian HM, Giles FJ, Bhalla KN, et al: Nilotinib is effective in patients with chronic   potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic
                     myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month   agents: Therapeutic applications. Blood 101:2377–2380, 2003.
                     follow-up results. Blood 117:1141–1145, 2011.        287. Mitsiades CS, Mitsiades NS, McMullan CJ, et al: Transcriptional signature of histone
                    256. Shah NP, Kim DW, Kantarjian H, et al: Potent, transient inhibition of BCR-ABL with dasa-  deacetylase inhibition in multiple myeloma: Biological and clinical implications. Proc
                     tinib 100 mg daily achieves rapid and durable cytogenetic responses and high transforma-  Natl Acad Sci U S A 101:540–545, 2004.
                     tion-free survival rates in chronic phase chronic myeloid leukemia patients with resistance,     288. San Miguel JF, Schlag R, Khuageva NK, et al: Bortezomib plus melphalan and predni-
                     suboptimal response or intolerance to imatinib. Haematologica 95:232–240, 2010.  sone for initial treatment of multiple myeloma. N Engl J Med 359:906–917, 2008.
                    257. Morel F, Bris MJ, Herry A, et al: Double minutes containing amplified bcr-abl fusion     289. Orlowski RZ, Nagler A, Sonneveld P, et al: Randomized phase III study of pegylated
                     gene in a case of chronic myeloid leukemia treated by imatinib. Eur J Haematol 70:235–  liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed
                     239, 2003.                                            or refractory multiple myeloma: Combination therapy improves time to progression. J
                    258. Mahon FX, Belloc F, Lagarde V, et al: MDR1 gene overexpression confers resistance to   Clin Oncol 25:3892–3901, 2007.
                     imatinib mesylate in leukemia cell line models. Blood 101:2368–2373, 2003.    290. Richardson PG, Weller E, Lonial S, et al: Lenalidomide, bortezomib, and dexametha-
                    259. White DL, Saunders VA, Dang P, et al: OCT-1-mediated influx is a key determinant   sone combination therapy in patients with newly diagnosed multiple myeloma. Blood
                     of the intracellular uptake of imatinib but not nilotinib (AMN107): Reduced OCT-1   116:679–686, 2010.
                     activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704, 2006.    291. Richardson PG, Briemberg H, Jagannath S, et al: Frequency, characteristics, and revers-
                    260. Andersen MK, Pedersen-Bjergaard J, Kjeldsen L, et al: Clonal Ph-negative hematopoie-  ibility of peripheral neuropathy during treatment of advanced multiple myeloma with
                     sis in CML after therapy with imatinib mesylate is frequently characterized by trisomy   bortezomib. J Clin Oncol 24:3113–3120, 2006.
                     8. Leukemia 16:1390–1393, 2002.                      292. Herndon TM, Deisseroth A, Kaminskas E, et al: U.S. Food and Drug Administration
                    261. Bumm T, Müller C, Al-Ali HK, et al: Emergence of clonal cytogenetic abnormalities in   approval: Carfilzomib for the treatment of multiple myeloma.  Clin Cancer Res 19:
                     Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of   4559–4563, 2013.
                     polyclonal hematopoiesis in the majority. Blood 101:1941–1949, 2003.    293. Chauhan D, Tian Z, Zhou B, et al: In vitro and in vivo selective antitumor activity of
                    262. Kantarjian HM, Giles F, Gattermann N, et al: Nilotinib (formerly AMN107), a highly   a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma
                     selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia   cells. Clin Cancer Res 17:5311–5321, 2011.
                     chromosome-positive chronic myelogenous leukemia in chronic phase following ima-    294. Kupperman E, Lee EC, Cao Y, et al: Evaluation of the proteasome inhibitor MLN9708
                     tinib resistance and intolerance. Blood 110:3540–3546, 2007.  in preclinical models of human cancer. Cancer Res 70:1970–1980, 2010.
                    263. Talpaz M, Shah NP, Kantarjian H, et al: Dasatinib in imatinib-resistant Philadelphia     295. Aghajanian C, Soignet S, Dizon DS, et al: A phase I trial of the novel proteasome inhib-
                     chromosome-positive leukemias. N Engl J Med 354:2531–2541, 2006.  itor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2511, 2002.
                    264. Tefferi A, Vardiman JW: Classification and diagnosis of myeloproliferative neoplasms:     296. Goldberg AL: Functions of the proteasome: From protein degradation and immune
                     The 2008 World Health Organization criteria and point-of-care diagnostic algorithms.   surveillance to cancer therapy. Biochem Soc Trans 35:12–17, 2007.
                     Leukemia 22:14–22, 2008.                             297. Meister S, Schubert U, Neubert K, et al: Extensive immunoglobulin production sensi-
                    265. Baxter EJ, Scott LM, Campbell PJ, et al: Acquired mutation of the tyrosine kinase JAK2   tizes myeloma cells for proteasome inhibition. Cancer Res 67:1783–1792, 2007.
                     in human myeloproliferative disorders. Lancet 365:1054–1061, 2005.    298. Nayak MK, Kulkarni PP, Dash D: Regulatory role of proteasome in determination of
                    266. James C, Ugo V, Le Couédic JP, et al: A unique clonal JAK2 mutation leading to consti-  platelet life span. J Biol Chem 288:6826–6834, 2013.
                     tutive signalling causes polycythaemia vera. Nature 434:1144–1148, 2005.    299. Arastu-Kapur S, Anderl JL, Kraus M, et al: Nonproteasomal targets of the proteasome
                    267. Levine RL, Wadleigh M, Cools J, et al: Activating mutation in the tyrosine kinase JAK2   inhibitors bortezomib and carfilzomib: A link to clinical adverse events. Clin Cancer
                     in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelo-  Res 17:2734–2743, 2011.
                     fibrosis. Cancer Cell 7:387–397, 2005.               300. Groll M, Berkers CR, Ploegh HL, Ovaa H: Crystal structure of the boronic acid-based
                    268. Ihle JN, Witthuhn BA, Quelle FW, et al: Signaling through the hematopoietic cytokine   proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure
                     receptors. Annu Rev Immunol 13:369–398, 1995.         14:451–456, 2006.
                    269. Sonbol MB, Firwana B, Zarzour A, et al: Comprehensive review of JAK inhibitors in     301. Adams J, Behnke M, Chen S, et al: Potent and selective inhibitors of the proteasome:
                     myeloproliferative neoplasms. Ther Adv Hematol 4:15–35, 2013.  Dipeptidyl boronic acids. Bioorg Med Chem Lett 8:333–338, 1998.
                    270. Chiorazzi  N,  Rai  KR,  Ferrarini  M:  Chronic  Lymphocytic  Leukemia.  N Engl J Med     302. Dorsey BD, Iqbal M, Chatterjee S, et al: Discovery of a potent, selective, and orally
                     352:804–815, 2005.                                    active proteasome inhibitor for the treatment of cancer. J Med Chem 51:1068–1072,
                    271. Hallek M, Fischer K, Fingerle-Rowson G, et al: Addition of rituximab to fludarabine   2008.
                     and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised,     303. Shimoda  N,  Fukazawa  N,  Nonomura  K,  Fairchild  RL:  Cathepsin  g  is  required  for
                     open-label, phase 3 trial. Lancet 376:1164–1174, 2010.  sustained inflammation and tissue injury after reperfusion of ischemic kidneys. Am J
                    272. Byrd JC, Furman RR, Coutre SE, et al: Targeting BTK with ibrutinib in relapsed chronic   Pathol 170:930–940, 2007.
                     lymphocytic leukemia. N Engl J Med 369:32–42, 2013.    304. Maloney DG, Smith B, Rose A: Rituximab: Mechanism of action and resistance. Semin
                    273. Byrd JC, Brown JR, O’Brien S, et al: Ibrutinib versus ofatumumab in previously treated   Oncol 29:2–9, 2002.
                     chronic lymphoid leukemia. N Engl J Med 371:213–223, 2014.    305. Klinger M, Brandl C, Zugmaier G, et al: Immunopharmacologic response of patients
                    274. Woyach JA, Furman RR, Liu TM, et al: Resistance mechanisms for the Bruton’s tyrosine   with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging
                     kinase inhibitor ibrutinib. N Engl J Med 370:2286–2294, 2014.  CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119:6226–6233, 2012.
                    275. Goldberg AL: Protein degradation and protection against misfolded or damaged pro-    306. Witzig TE, Gordon LI, Cabanillas F, et al: Randomized controlled trial of yttrium-90-la-
                     teins. Nature 426:895–899, 2003.                      beled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy
                    276. Demo SD, Kirk CJ, Aujay MA, et al: Antitumor activity of PR-171, a novel irreversible   for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non
                     inhibitor of the proteasome. Cancer Res 67:6383–6391, 2007.  -Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463, 2002.
                    277. Orlowski RZ, Stinchcombe TE, Mitchell BS, et al: Phase I trial of the proteasome inhib-    307. Pro B, Advani R, Brice P, et al: Brentuximab vedotin (SGN-35) in patients with relapsed
                     itor PS-341 in patients with refractory hematologic malignancies.  J Clin Oncol 20:   or refractory systemic anaplastic large-cell lymphoma: Results of a phase II study. J Clin
                     4420–4427, 2002.                                      Oncol 30:2190–2196, 2012.
                    278. Richardson PG, Barlogie B, Berenson J, et al: A phase 2 study of bortezomib in relapsed,     308. Miller RA, Maloney DG, Warnke R, Levy R: Treatment of B-cell lymphoma with mono-
                     refractory myeloma. N Engl J Med 348:2609–2617, 2003.  clonal anti-idiotype antibody. N Engl J Med 306:517–522, 1982.
                    279. Richardson PG, Sonneveld P, Schuster MW, et al: Bortezomib or high-dose dexametha-    309. Stashenko P, Nadler LM, Hardy R, Schlossman SF: Characterization of a human B lym-
                     sone for relapsed multiple myeloma. N Engl J Med 352:2487–2498, 2005.  phocyte-specific antigen. J Immunol 125:1678–1685, 1980.
                    280. Sitia R, Palladini G, Merlini G: Bortezomib in the treatment of AL amyloidosis: Tar-    310. Tedder TF, Forsgren A, Boyd AW, et al: Antibodies reactive with the B1 molecule inhibit
                     geted therapy? Haematologica 92:1302–1307, 2007.      cell cycle progression but not activation of human B lymphocytes.  Eur J ImmunolJ
                    281. Goy A, Younes A, McLaughlin P, et al: Phase II study of proteasome inhibitor borte-  Immunol 16:881–887, 1986.
                     zomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–    311. Smeland E, Godal T, Ruud E, et al: The specific induction of myc protooncogene expres-
                     675, 2005.                                            sion in normal human B cells is not a sufficient event for acquisition of competence to
                    282. Fisher RI, Bernstein SH, Kahl BS, et al: Multicenter phase II study of bortezomib in   proliferate. Proc Natl Acad Sci U S A 82:6255–6259, 1985.
                     patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24:4867–4874,     312. Deans JP, Schieven GL, Shu GL, et al: Association of tyrosine and serine kinases with
                     2006.                                                 the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and
                    283. O’Connor OA, Wright J, Moskowitz C, et al: Phase II clinical experience with the novel   activation of phospholipase C-gamma 1 and PLC phospholipase C-gamma 2. J Immu-
                     proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma   nol 151:4494–4504, 1993.
                     and mantle cell lymphoma. J Clin Oncol 23:676–684, 2005.







          Kaushansky_chapter 22_p0313-0352.indd   351                                                                   9/18/15   10:26 PM
   371   372   373   374   375   376   377   378   379   380   381