Page 374 - Williams Hematology ( PDFDrive )
P. 374

348  Part V:  Therapeutic Principles        Chapter 22:  Pharmacology and  Toxicity of  Antineoplastic Drugs          349




                    134. Ozols RF, Corden BJ, Jacob J, et al: High-dose cisplatin in hypertonic saline. Ann Intern     164. D’Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angio-
                     MedIntern Med 100:19–24, 1984.                        genesis. Proc Natl Acad Sci U S A 91:4082–4085, 1994.
                    135. Peters WP, Henner WD, Grochow LB, et al: Clinical and pharmacologic effects of high     165. Moreira AL, Friedlander DR, Shif B, et al: Thalidomide and a thalidomide analogue
                     dose single agent busulfan with autologous bone marrow support in the treatment of   inhibit endothelial cell proliferation in vitro. J Neurooncol 43:109–114, 1999.
                     solid tumors. Cancer Res 47:6402–6406, 1987.         166. Muller GW, Chen R, Huang SY, et al: Amino-substituted thalidomide analogs: Potent
                    136. Phillips GL, Wolff SN, Fay JW, et al: Intensive 1,3-bis (2-chloroethyl)-1-nitrosourea   inhibitors of TNF-alpha production. Bioorg Med Chem Lett 9:1625–1630, 1999.
                     (BCNU) monochemotherapy and autologous marrow transplantation for malignant     167. LeBlanc R, Hideshima T, Catley LP, et al: Immunomodulatory drug costimulates T cells
                     glioma. J Clin Oncol 4:639–645, 1986.                 via the B7-CD28 pathway. Blood 103:1787–1790, 2004.
                    137. Shea TC, Flaherty M, Elias A, et al: A phase I clinical and pharmacokinetic study of     168. Zhu YX, Braggio E, Shi CX, et al: Identification of cereblon binding proteins and rela-
                     carboplatin and autologous bone marrow support. J Clin Oncol 7:651–661, 1989.  tionship with response and survival following pomalidomide and dexamethasone in
                    138. Dunphy FR, Spitzer G, Buzdar AU, et al: Treatment of estrogen receptor-negative or   multiple myeloma. Blood 124:536–545, 2014.
                     hormonally refractory breast cancer with double high-dose chemotherapy intensifica-    169. Richardson PG, Schlossman RL, Weller E, et al: Immunomodulatory drug CC-5013
                     tion and bone marrow support. J Clin Oncol 8:1207–1216, 1990.  overcomes drug resistance and is well tolerated in patients with relapsed multiple mye-
                    139. Eder JP, Elias A, Shea TC, et al: A phase I-II study of cyclophosphamide, thiotepa, and   loma. Blood 100:3063–3067, 2002.
                     carboplatin with autologous bone marrow transplantation in solid tumor patients. J     170. Teo SK, Scheffler MR, Kook KA, et al: Thalidomide dose proportionality assessment
                     Clin Oncol 8:1239–1245, 1990.                         following single doses to healthy subjects. J Clin Pharmacol 41:662–667, 2001.
                    140. Jones RJ, Piantadosi S, Mann RB, et al: High-dose cytotoxic therapy and bone marrow     171. Scott LJ: Pomalidomide: A review of its use in patients with recurrent multiple mye-
                     transplantation for relapsed Hodgkin’s disease. J Clin Oncol 8:527–537, 1990.  loma. Drugs 74:549–562, 2014.
                    141. Kessinger A, Armitage JO, Smith DM, et al: High-dose therapy and autologous peripheral     172. Piscitelli SC, Figg WD, Hahn B, et al: Single-dose pharmacokinetics of thalidomide
                     blood stem cell transplantation for patients with lymphoma. Blood 74:1260–1265, 1989.  in human immunodeficiency virus-infected patients.  Antimicrob Agents Chemother
                    142. Wilson WH, Jain V, Bryant G, et al: Phase I and II study of high-dose ifosfamide, car-  41:2797–2799, 1997.
                     boplatin, and etoposide with autologous bone marrow rescue in lymphomas and solid     173. Singhal S, Mehta J, Desikan R, et al: Antitumor activity of thalidomide in refractory
                     tumors. J Clin Oncol 10:1712–1722, 1992.              multiple myeloma. N Engl J Med 341:1565–1571, 1999.
                    143. Umezawa H, Maeda K, Takeuchi T, Okami Y: New antibiotics, bleomycin A and B. J     174. Mileshkin L, Biagi JJ, Mitchell P, et al: Multicenter phase 2 trial of thalidomide in
                     Antibiot (Tokyo) 19:200–209, 1966.                    relapsed/refractory multiple myeloma: Adverse prognostic impact of advanced age.
                    144. Burger RM: Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1170, 1998.  Blood 102:69–77, 2003.
                    145. Sebti SM, Jani JP, Mistry JS, et al: Metabolic inactivation: A mechanism of human     175. Rajkumar SV, Hayman S, Gertz MA, et al: Combination therapy with thalidomide plus
                     tumor resistance to bleomycin. Cancer Res 51:227–232, 1991.  dexamethasone for newly diagnosed myeloma. J Clin Oncol 20:4319–4323, 2002.
                    146. De Haas EC, Zwart N, Meijer C, et al: Variation in bleomycin hydrolase gene is asso-    176. Musallam KM, Dahdaleh FS, Shamseddine AI, Taher AT: Incidence and prophylaxis of
                     ciated with reduced survival after chemotherapy for testicular germ cell cancer. J Clin   venous thromboembolic events in multiple myeloma patients receiving immunomod-
                     Oncol 26:1817–1823, 2008.                             ulatory therapy. Thromb Res 123:679–686, 2009.
                    147. Alberts DS, Chen HS, Liu R, et al: Bleomycin pharmacokinetics in man. I. Intravenous     177. Nathan PD, Gore ME, Eisen TG: Unexpected toxicity of combination thalidomide
                     administration. Cancer Chemother Pharmacol 1:177–181, 1978.  and interferon alpha-2a treatment in metastatic renal cell carcinoma. J Clin Oncol 20:
                    148. Karmiol S, Remick DG, Kunkel SL, Phan SH: Regulation of rat pulmonary endothelial   1429–1430, 2002.
                     cell interleukin-6 production by bleomycin: Effects of cellular fatty acid composition.     178. Ebert BL, Galili N, Tamayo P, et al: An erythroid differentiation signature predicts
                     Am J Respir Cell Mol Biol 9:628–636, 1993.            response to lenalidomide in myelodysplastic syndrome. PLoS Med 5:e35, 2008.
                    149. Evens AM, Hong F, Gordon LI, et al: The efficacy and tolerability of Adriamycin, ble-    179. Andritsos LA, Johnson AJ, Lozanski G, et al: Higher doses of lenalidomide are associ-
                     omycin, vinblastine, dacarbazine and Stanford V in older Hodgkin lymphoma patients:   ated with unacceptable toxicity including life-threatening tumor flare in patients with
                     A comprehensive analysis from the North American intergroup trial E2496. Br J Hae-  chronic lymphocytic leukemia. J Clin Oncol 26:2519–2525, 2008.
                     matol 161:76–86, 2013.                               180. Weber DM, Chen C, Niesvizky R, et al: Lenalidomide plus dexamethasone for relapsed
                    150. Comis RL: Detecting bleomycin pulmonary toxicity: A continued conundrum. J Clin   multiple myeloma in North America. N Engl J Med 357:2133–2142, 2007.
                     Oncol 8:765–767, 1990.                               181. Kizaki M, Nakazato T, Ito K, et al: A novel therapeutic approach for hematological
                    151. Hutson RG, Kitoh T, Moraga Amador DA, et al: Amino acid control of asparagine syn-  malignancies based on cellular differentiation and apoptosis. Int J Hematol 76 (Suppl 1):
                     thetase: Relation to asparaginase resistance in human leukemia cells. Am J Physiol J   250–252, 2002.
                     Physiol 272(5 Pt 1):C1691–C1699, 1997.               182. Parkinson D, Smith M: Retinoid therapy for acute promyelocytic leukemia: A coming
                    152. Kaspers GJ, Veerman AJ, Pieters R, et al: In vitro cellular drug resistance and progno-  of age for the differentiation therapy of malignancy. Ann Intern Med 117:338–340, 1992.
                     sis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 90:2723–2729,     183. Sandor V, Bakke S, Robey RW, et al: Phase I trial of the histone deacetylase inhibitor,
                     1997.                                                 depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms.  Clin
                    153. Holle LM: Pegaspargase: An alternative? Ann Pharmacother 31:616–624, 1997.  Cancer Res 8:718–728, 2002.
                    154. Ettinger LJ, Ettinger AG, Avramis VI, Gaynon PS: Acute lymphoblastic leukaemia: A     184. Warrell RP Jr, Frankel SR, Miller WH Jr, et al.: Differentiation therapy of acute promyelo-
                     guide to asparaginase and pegaspargase therapy. BioDrugs 7:30–39, 1997.  cytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393, 1991.
                    155. Semeraro N, Montemurro P, Giordano P, et al: Unbalanced coagulation-fibrinolysis     185. Kakizuka A, Miller WH Jr, Umesono K, et al: Chromosomal translocation t(15;17) in
                     potential during L-asparaginase therapy in children with acute lymphoblastic leu-  human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcrip-
                     kaemia. Thromb Haemost 64:38–40, 1990.                tion factor, PML. Cell 66:663–674, 1991.
                    156. Bushara KO, Rust RS: Reversible MRI lesions due to pegaspargase treatment of non    186. Collins SJ: Retinoic acid receptors, hematopoiesis and leukemogenesis.  Curr Opin
                     -Hodgkin’s lymphoma. Pediatr Neurol 17:185–187, 1997.  Hematol 15:346–351, 2008.
                    157. Mitchell LG, Andrew M, Hanna K, et al: A prospective cohort study determining the     187. Robertson KA, Emami B, Collins SJ: Retinoic acid-resistant HL-60R cells harbor a
                     prevalence of thrombotic events in children with acute lymphoblastic leukemia and   point mutation in the retinoic acid receptor ligand-binding domain that confers domi-
                     a central venous line who are treated with L-asparaginase: results of the Prophylactic   nant negative activity. Blood 80:1885–1889, 1992.
                     Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with     188. Muindi JR, Frankel SR, Huselton C, et al: Clinical pharmacology of oral all-trans retin-
                     Asparaginase (PARKAA) Study. Cancer 97:508–516, 2003.  oic acid in patients with acute promyelocytic leukemia. Cancer Res 52:2138–2142, 1992.
                    158. Heitink-Pollé KM1, Prinsen BH, de Koning TJ, et al: High incidence of symptomatic     189. Muindi J, Frankel SR, Miller WH Jr, et al: Continuous treatment with all-trans retinoic
                     hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated   acid causes a progressive reduction in plasma drug concentrations: Implications for
                     asparaginase. JIMD Rep 7:103–108, 2013.               relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood
                    159. Nowak-Göttl U, Wermes C, Junker R, et al: Prospective evaluation of the thrombotic   79:299–303, 1992.
                     risk in children with acute lymphoblastic leukemia carrying the MTHFR TT 677 geno-    190. Frankel SR, Eardley A, Lauwers G, et al: The “retinoic acid syndrome” in acute promy-
                     type, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood   elocytic leukemia. Ann Intern MedIntern Med 117:292–296, 1992.
                     93:1595–1599, 1999.                                  191. De Botton S, Dombret H, Sanz M, et al: Incidence, clinical features, and outcome of
                    160. Parsons SK, Skapek SX, Neufeld EJ, et al: Asparaginase-associated lipid abnormalities in   all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic
                     children with acute lymphoblastic leukemia. Blood 89:1886–1895, 1997.  leukemia. The European APL Group. Blood 92:2712–2718, 1998.
                    161. Strobeck M: Multiple myeloma therapies. Nat Rev Drug Discov 6:181–182, 2007.    192. Soignet SL, Maslak P, Wang ZG, et al: Complete remission after treatment of acute pro-
                    162. Roussel M, Lauwers-Cances V, Robillard N, et al: Front-line transplantation pro-  myelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348, 1998.
                     gram with lenalidomide, bortezomib, dexamethasone combination as induction and     193. Miller WH Jr, Schipper HM, Lee JS, et al: Mechanisms of action of arsenic trioxide.
                     consolidation followed by lenalidomide maintenance in patients with multiple mye-  Cancer Res 62:3893–3903, 2002.
                     loma: A phase II study by the Intergroupe Francophone du Myélome. J Clin Oncol 32:     194. Wang ZY, Chen Z: Acute promyelocytic leukemia: From highly fatal to highly curable.
                     2712–2717, 2014.                                      Blood 111:2505–2515, 2008.
                    163. Richardson PG, Siegel DS, Vij R, et al: Pomalidomide alone or in combination with     195. Lallemand-Breitenbach V, Jeanne M, Benhenda S, et al: Arsenic degrades PML or
                     low-dose dexamethasone in relapsed and refractory multiple myeloma: A randomized   PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat
                     phase 2 study. Blood 123:1826–1832, 2014.             Cell Biol 10:547–555, 2008.








          Kaushansky_chapter 22_p0313-0352.indd   349                                                                   9/18/15   10:26 PM
   369   370   371   372   373   374   375   376   377   378   379