Page 372 - Williams Hematology ( PDFDrive )
P. 372

346  Part V:  Therapeutic Principles        Chapter 22:  Pharmacology and  Toxicity of  Antineoplastic Drugs          347




                    11.  Borst P, Elferink RO: Mammalian ABC transporters in health and disease. Annu Rev     41.  Flasshove M, Strumberg D, Ayscue L, et al: Structural analysis of the deoxycytidine
                     Biochem 71:537–592, 2002.                             kinase gene in patients with the acute myeloid leukemia and resistance to cytosine ara-
                    12.  Kruh GD, Zeng H, Rea PA, et al: MRP subfamily transporters and resistance to antican-  binoside. Leukemia 8:780–785, 1993.
                     cer agents. J Bioenerg Biomembr 33:493–501, 2001.    42.  Capizzi R, Powell B: Sequential high-dose ara-C and asparaginase versus high-dose
                    13.  Goker E, Waltham M, Kheradpour A, et al: Amplification of the dihydrofolate reductase   ara-C alone in the treatment of patients with relapsed and refractory acute leukemias.
                     gene is a mechanism of acquired resistance to methotrexate in patients with acute lym-  Semin Oncol 14(2 Suppl 1):40–50, 1987.
                     phoblastic leukemia and is correlated with p53 gene mutations. Blood 86:677–684, 1995.    43.  Cole BF, Glantz MJ, Jaeckle KA, et al: Quality-of-life-adjusted survival comparison of
                    14.  Nimmanapalli R, Bhalla K: Mechanisms of resistance to imatinib mesylate in   sustained-release cytosine arabinoside versus intrathecal methotrexate for treatment of
                     Bcr-Abl-positive leukemias. Curr Opin Oncol 14:616–620, 2002.  solid tumor neoplastic meningitis. Cancer 97:3053–3060, 2003.
                    15.  Fink D, Aebi S, Howell SB: The role of DNA mismatch repair in drug resistance. Clin     44.  Kern W, Kurrle E, Schmeiser T: Streptococcal bacteremia in adult patients with leuke-
                     Cancer Res 4:1–6, 1998.                               mia undergoing aggressive chemotherapy. A review of 55 cases. Infection 18:138–145,
                    16.  Kirsch DG, Kastan MB: Tumor-suppressor p53: Implications for tumor development   1990.
                     and prognosis. J Clin Oncol 16:3158–3168, 1998.      45.  Herzig RH, Hines JD, Herzig GP, et al: Cerebellar toxicity with high-dose cytosine ara-
                    17.  Holleman A, den Boer ML, Cheok MH, et al: Expression of the outcome predictor in   binoside. J Clin Oncol 5:927–932, 1987.
                     acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients     46.  Gandhi V: Questions about gemcitabine dose rate: Answered or unanswered? J Clin
                     treated according to COALL or St Jude protocols. Blood 108:1984–1990, 2006.  Oncol 25:5691–5694, 2007.
                    18.  Leong KG, Wang, BE, Johnson L, Gao WQ: Generation of a prostate from a single adult     47.  Walter RB, Joerger M, Pestalozzi BC: Gemcitabine-associated hemolytic-uremic syn-
                     stem cell. Nature 456:804–808, 2008.                  drome. Am J Kidney Dis 40:E16, 2002.
                    19.  Diehn M, Cho RW, Lobo NA, et al: Association of reactive oxygen species levels and     48.  Claus  R, Lübbert M:  Epigenetic targets in  hematopoietic  malignancies.  Oncogene
                     radioresistance in cancer stem cells. Nature 458:780–783, 2009.  22:6489–6496, 2003.
                    20.  Moscow JA, Connolly T, Myers TG, et al: Reduced folate carrier gene (RFC1) expres-    49.  Kantarjian HM, O’Brien S, Cortes J, et al: Results of decitabine (5-aza-2′deoxycytidine)
                     sion and anti-folate resistance in transfected and non-selected cell lines. Int J Cancer   therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528, 2003.
                     72:184–190, 1997.                                    50.  Rodriguez CO Jr, Stellrecht CM, Gandhi V: Mechanisms for T-cell selective cytotoxicity
                    21.  Barrado J, Synold T, Laver J, et al: Co-administration of probenecid, an inhibitor of   of arabinosyl guanine. Blood 102:1842–1848, 2003.
                     a cMOAT/MRP-like plasma membrane ATPase, greatly enhanced the efficacy of     51.  Karran P, Attard N: Thiopurines in current medical practice: Molecular mechanisms
                     a new 10-deazaaminopterin against human solid tumors in vivo. Clin Cancer Res 6:   and contributions to therapy-related cancer. Nat Rev Cancer 8:24–36, 2008.
                     3705–3712, 2000.                                     52.  Fotoohi AK, Coulthard SA, Albertioni F: Thiopurines: Factors influencing toxicity and
                    22.  Zhao R, Qiu A, Tsai E, et al: The proton-coupled folate transporter: Impact on peme-  response. Biochem Pharmacol 79:1211–1220, 2010.
                     trexed transport and on antifolates activities compared with the reduced folate carrier.     53.  Lennard L, Lilleyman JS: Are children with lymphoblastic leukaemia given enough
                     Mol Pharmacol 74:854–862, 2008.                       6-mercaptopurine? Lancet 2:785–787, 1987.
                    23.  Galpin AJ, Schuetz JD, Masson E, et al: Differences in folylpolyglutamate synthetase     54.  Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM: Genetic variation in response
                     and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic   to 6-mercaptopurine for childhood acute lymphoblastic leukaemia.  Lancet 336:
                     lymphoblasts: Mechanisms for lineage differences in methotrexate polyglutamylation   225–229, 1990.
                     and cytotoxicity. Mol Pharmacol 52:155–163, 1997.    55.  Krishnamurthy P, Schwab M, Takenaka K, et al: Transporter-mediated protection
                    24.  Masson E, Relling MV, Synold TW, et al: Accumulation of methotrexate polyglutamates   against thiopurine-induced hematopoietic toxicity. Cancer Res 68:4983–4989, 2008.
                     in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-    56.  Stocco G, Cheok MH, Crews KR, et al: Genetic polymorphism of inosine triphosphate
                     dose methotrexate. J Clin Invest 97:73–80, 1996.      pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during
                    25.  Synold TW, Relling MV, Boyett JM, et al: Blast cell methotrexate-polyglutamate accu-  treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 85:164–172, 2009.
                     mulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblas-    57.  Zimm S, Collins JM, Riccardi R, et al: Variable bioavailability of oral mercaptopurine.
                     tic leukemia. J Clin Invest 94:1996–2001, 1994.       Is maintenance chemotherapy in acute lymphoblastic leukemia being optimally deliv-
                    26.  Cheng Q, Wu B, Kager L, et al: A substrate specific functional polymorphism of human   ered? N Engl J Med 308:1005–1009, 1983.
                     gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accu-    58.  Erb N, Harms DO, Janka-Schaub G: Pharmacokinetics and metabolism of thiopu-
                     mulation in acute lymphoblastic leukaemia cells. Pharmacogenetics 14:557–567, 2004.  rines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-
                    27.  Longo GS, Gorlick R, Tong WP, et al: Gamma-Glutamyl hydrolase and folylpolyglu-  mercaptopurine. Cancer Chemother Pharmacol 42:266–272, 1998.
                     tamate synthetase activities predict polyglutamylation of methotrexate in acute leuke-    59.  Harms DO, Göbel U, Spaar HJ, et al: Thioguanine offers no advantage over mercapto-
                     mias. Oncol Res 9:259–263, 1997.                      purine in maintenance treatment of childhood ALL: Results of the randomized trial
                    28.  Ge Y, Haska CL, LaFiura K, et al: Prognostic role of the reduced folate carrier, the major   COALL-92. Blood 102:2736–2740, 2003.
                     membrane transporter for methotrexate, in childhood acute lymphoblastic leukemia:     60.  Jones TS, Yang W, Evans WE, Relling MV: Using HapMap tools in pharmacogenomic
                     A report from the Children’s Oncology Group. Clin Cancer Res 13:451–457, 2007.  discovery: The thiopurine methyltransferase polymorphism.  Clin Pharmacol Ther
                    29.  Rothem L, Aronheim A, Assaraf YG: Alterations in the expression of transcription   81:729–734, 2007.
                     factors and the reduced folate carrier as a novel mechanism of antifolate resistance in     61.  Keating MJ, O’Brien S, Lerner S, et al: Long-term follow-up of patients with chronic
                     human leukemia cells. J Biol Chem 278:8935–8941, 2003.  lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood
                    30.  Stoller RG, Hande KR, Jacobs SA, et al: Use of plasma pharmacokinetics to predict and   92:1165–1171, 1998.
                     prevent methotrexate toxicity. N Engl J Med 297:630–634, 1977.    62.  Slavin S, Nagler A, Naparstek E, et al: Nonmyeloablative stem cell transplantation and
                    31.  Evans WE, Crom WR, Abromowitch M, et al: Clinical pharmacodynamics of high-  cell therapy as an alternative to conventional bone marrow transplantation with lethal
                     dose methotrexate in acute lymphocytic leukemia. Identification of a relation between   cytoreduction for the treatment of malignant and nonmalignant hematologic diseases.
                     concentration and effect. N Engl J Med 314:471–477, 1986.  Blood 91:756–763, 1998.
                    32.  Wall SM, Johansen MJ, Molony DA, et al: Effective clearance of methotrexate using     63.  Brockman RW, Cheng YC, Schabel FM, Montgomery JA: Metabolism and chemother-
                     high-flux hemodialysis membranes. Am J Kidney Dis 28:846–854, 1996.  apeutic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leuke-
                    33.  Widemann BC, Schwartz S, Jayaprakash N, et al: Efficacy of glucarpidase (carboxypep-  mia L1210 and evidence for its phosphorylation by deoxycytidine kinase. Cancer Res
                     tidase g2) in patients with acute kidney injury after high-dose methotrexate therapy.   40:3610–3615, 1980.
                     Pharmacotherapy 34:427–439, 2014.                    64.  Gandhi V, Plunkett W: Cellular and clinical pharmacology of fludarabine. Clin Pharma-
                    34.  Shapiro WR, Allen JC, Horten BC: Chronic methotrexate toxicity to the central ner-  cokinet 41:93–103, 2002.
                     vous system. Clin Bull 10:49–52, 1980.               65.  Lichtman SM, Etcubanas E, Budman DR, et al: The pharmacokinetics and pharmaco-
                    35.  Bloomfield CD, Lawrence D, Byrd JC, et al: Frequency of prolonged remission duration   dynamics of fludarabine phosphate in patients with renal impairment: A prospective
                     after high-dose cytarabine intensification in acute myeloid leukemia varies by cytoge-  dose adjustment study. Cancer Invest 20:904–913, 2002.
                     netic subtype. Cancer Res 58:4173–4179, 1998.        66.  Martell RE, Peterson BL, Cohen HJ, et al: Analysis of age, estimated creatinine clear-
                    36.  Stam RW, den Boer ML, Meijerink JP, et al: Differential mRNA expression of Ara-C-me-  ance and pretreatment hematologic parameters as predictors of fludarabine toxicity in
                     tabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute   patients treated for chronic lymphocytic leukemia: A CALGB (9011) coordinated inter-
                     lymphoblastic leukemia. Blood 101:1270–1276, 2003.    group study. Cancer Chemother Pharmacol 50:37–45, 2002.
                    37.  Neubauer A, Maharry K, Mrózek K, et al: Patients with acute myeloid leukemia and     67.  Cheson BD, Frame JN, Vena D, et al: Tumor lysis syndrome: An uncommon com-
                     RAS mutations benefit most from postremission high-dose cytarabine: A Cancer and   plication of  fludarabine  therapy  of chronic lymphocytic  leukemia.  J Clin Oncol  16:
                     Leukemia Group B study. J Clin Oncol 26:4603–4609, 2008.  2313–2320, 1998.
                    38.  Lamba JK, Crews K, Pounds S, et al: Pharmacogenetics of deoxycytidine kinase: Iden-    68.  Cheson BD: Infectious and immunosuppressive complications of purine analog ther-
                     tification and characterization of novel genetic variants. J Pharmacol Exp Ther 323:   apy. J Clin Oncol 13:2431–2448, 1995.
                     935–945, 2007.                                       69.  Helman DL Jr, Byrd JC, Ales NC, Shorr AF: Fludarabine-related pulmonary toxicity: A
                    39.  Kufe  DW,  Munroe  D,  Herrick  D,  et  al:  Effects  of  1-beta-D-arabinofuranosylcytosine   distinct clinical entity in chronic lymphoproliferative syndromes. Chest 122:785–790,
                     incorporation on eukaryotic DNA template function. Mol Pharmacol 26:128–134, 1984.  2002.
                    40.  Owens JK, Shewach DS, Ullman B, Mitchell BS: Resistance to 1-beta-D-arabinofura-    70.  Tam CS, O’Brien S, Wierda W, et al: Long-term results of the fludarabine, cyclophos-
                     nosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycyti-  phamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia.
                     dine kinase gene. Cancer Res 52:2389–2393, 1992.      Blood 112:975–980, 2008.





          Kaushansky_chapter 22_p0313-0352.indd   347                                                                   9/18/15   10:26 PM
   367   368   369   370   371   372   373   374   375   376   377