Page 372 - Williams Hematology ( PDFDrive )
P. 372
346 Part V: Therapeutic Principles Chapter 22: Pharmacology and Toxicity of Antineoplastic Drugs 347
11. Borst P, Elferink RO: Mammalian ABC transporters in health and disease. Annu Rev 41. Flasshove M, Strumberg D, Ayscue L, et al: Structural analysis of the deoxycytidine
Biochem 71:537–592, 2002. kinase gene in patients with the acute myeloid leukemia and resistance to cytosine ara-
12. Kruh GD, Zeng H, Rea PA, et al: MRP subfamily transporters and resistance to antican- binoside. Leukemia 8:780–785, 1993.
cer agents. J Bioenerg Biomembr 33:493–501, 2001. 42. Capizzi R, Powell B: Sequential high-dose ara-C and asparaginase versus high-dose
13. Goker E, Waltham M, Kheradpour A, et al: Amplification of the dihydrofolate reductase ara-C alone in the treatment of patients with relapsed and refractory acute leukemias.
gene is a mechanism of acquired resistance to methotrexate in patients with acute lym- Semin Oncol 14(2 Suppl 1):40–50, 1987.
phoblastic leukemia and is correlated with p53 gene mutations. Blood 86:677–684, 1995. 43. Cole BF, Glantz MJ, Jaeckle KA, et al: Quality-of-life-adjusted survival comparison of
14. Nimmanapalli R, Bhalla K: Mechanisms of resistance to imatinib mesylate in sustained-release cytosine arabinoside versus intrathecal methotrexate for treatment of
Bcr-Abl-positive leukemias. Curr Opin Oncol 14:616–620, 2002. solid tumor neoplastic meningitis. Cancer 97:3053–3060, 2003.
15. Fink D, Aebi S, Howell SB: The role of DNA mismatch repair in drug resistance. Clin 44. Kern W, Kurrle E, Schmeiser T: Streptococcal bacteremia in adult patients with leuke-
Cancer Res 4:1–6, 1998. mia undergoing aggressive chemotherapy. A review of 55 cases. Infection 18:138–145,
16. Kirsch DG, Kastan MB: Tumor-suppressor p53: Implications for tumor development 1990.
and prognosis. J Clin Oncol 16:3158–3168, 1998. 45. Herzig RH, Hines JD, Herzig GP, et al: Cerebellar toxicity with high-dose cytosine ara-
17. Holleman A, den Boer ML, Cheok MH, et al: Expression of the outcome predictor in binoside. J Clin Oncol 5:927–932, 1987.
acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients 46. Gandhi V: Questions about gemcitabine dose rate: Answered or unanswered? J Clin
treated according to COALL or St Jude protocols. Blood 108:1984–1990, 2006. Oncol 25:5691–5694, 2007.
18. Leong KG, Wang, BE, Johnson L, Gao WQ: Generation of a prostate from a single adult 47. Walter RB, Joerger M, Pestalozzi BC: Gemcitabine-associated hemolytic-uremic syn-
stem cell. Nature 456:804–808, 2008. drome. Am J Kidney Dis 40:E16, 2002.
19. Diehn M, Cho RW, Lobo NA, et al: Association of reactive oxygen species levels and 48. Claus R, Lübbert M: Epigenetic targets in hematopoietic malignancies. Oncogene
radioresistance in cancer stem cells. Nature 458:780–783, 2009. 22:6489–6496, 2003.
20. Moscow JA, Connolly T, Myers TG, et al: Reduced folate carrier gene (RFC1) expres- 49. Kantarjian HM, O’Brien S, Cortes J, et al: Results of decitabine (5-aza-2′deoxycytidine)
sion and anti-folate resistance in transfected and non-selected cell lines. Int J Cancer therapy in 130 patients with chronic myelogenous leukemia. Cancer 98:522–528, 2003.
72:184–190, 1997. 50. Rodriguez CO Jr, Stellrecht CM, Gandhi V: Mechanisms for T-cell selective cytotoxicity
21. Barrado J, Synold T, Laver J, et al: Co-administration of probenecid, an inhibitor of of arabinosyl guanine. Blood 102:1842–1848, 2003.
a cMOAT/MRP-like plasma membrane ATPase, greatly enhanced the efficacy of 51. Karran P, Attard N: Thiopurines in current medical practice: Molecular mechanisms
a new 10-deazaaminopterin against human solid tumors in vivo. Clin Cancer Res 6: and contributions to therapy-related cancer. Nat Rev Cancer 8:24–36, 2008.
3705–3712, 2000. 52. Fotoohi AK, Coulthard SA, Albertioni F: Thiopurines: Factors influencing toxicity and
22. Zhao R, Qiu A, Tsai E, et al: The proton-coupled folate transporter: Impact on peme- response. Biochem Pharmacol 79:1211–1220, 2010.
trexed transport and on antifolates activities compared with the reduced folate carrier. 53. Lennard L, Lilleyman JS: Are children with lymphoblastic leukaemia given enough
Mol Pharmacol 74:854–862, 2008. 6-mercaptopurine? Lancet 2:785–787, 1987.
23. Galpin AJ, Schuetz JD, Masson E, et al: Differences in folylpolyglutamate synthetase 54. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM: Genetic variation in response
and dihydrofolate reductase expression in human B-lineage versus T-lineage leukemic to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:
lymphoblasts: Mechanisms for lineage differences in methotrexate polyglutamylation 225–229, 1990.
and cytotoxicity. Mol Pharmacol 52:155–163, 1997. 55. Krishnamurthy P, Schwab M, Takenaka K, et al: Transporter-mediated protection
24. Masson E, Relling MV, Synold TW, et al: Accumulation of methotrexate polyglutamates against thiopurine-induced hematopoietic toxicity. Cancer Res 68:4983–4989, 2008.
in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high- 56. Stocco G, Cheok MH, Crews KR, et al: Genetic polymorphism of inosine triphosphate
dose methotrexate. J Clin Invest 97:73–80, 1996. pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during
25. Synold TW, Relling MV, Boyett JM, et al: Blast cell methotrexate-polyglutamate accu- treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 85:164–172, 2009.
mulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblas- 57. Zimm S, Collins JM, Riccardi R, et al: Variable bioavailability of oral mercaptopurine.
tic leukemia. J Clin Invest 94:1996–2001, 1994. Is maintenance chemotherapy in acute lymphoblastic leukemia being optimally deliv-
26. Cheng Q, Wu B, Kager L, et al: A substrate specific functional polymorphism of human ered? N Engl J Med 308:1005–1009, 1983.
gamma-glutamyl hydrolase alters catalytic activity and methotrexate polyglutamate accu- 58. Erb N, Harms DO, Janka-Schaub G: Pharmacokinetics and metabolism of thiopu-
mulation in acute lymphoblastic leukaemia cells. Pharmacogenetics 14:557–567, 2004. rines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-
27. Longo GS, Gorlick R, Tong WP, et al: Gamma-Glutamyl hydrolase and folylpolyglu- mercaptopurine. Cancer Chemother Pharmacol 42:266–272, 1998.
tamate synthetase activities predict polyglutamylation of methotrexate in acute leuke- 59. Harms DO, Göbel U, Spaar HJ, et al: Thioguanine offers no advantage over mercapto-
mias. Oncol Res 9:259–263, 1997. purine in maintenance treatment of childhood ALL: Results of the randomized trial
28. Ge Y, Haska CL, LaFiura K, et al: Prognostic role of the reduced folate carrier, the major COALL-92. Blood 102:2736–2740, 2003.
membrane transporter for methotrexate, in childhood acute lymphoblastic leukemia: 60. Jones TS, Yang W, Evans WE, Relling MV: Using HapMap tools in pharmacogenomic
A report from the Children’s Oncology Group. Clin Cancer Res 13:451–457, 2007. discovery: The thiopurine methyltransferase polymorphism. Clin Pharmacol Ther
29. Rothem L, Aronheim A, Assaraf YG: Alterations in the expression of transcription 81:729–734, 2007.
factors and the reduced folate carrier as a novel mechanism of antifolate resistance in 61. Keating MJ, O’Brien S, Lerner S, et al: Long-term follow-up of patients with chronic
human leukemia cells. J Biol Chem 278:8935–8941, 2003. lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood
30. Stoller RG, Hande KR, Jacobs SA, et al: Use of plasma pharmacokinetics to predict and 92:1165–1171, 1998.
prevent methotrexate toxicity. N Engl J Med 297:630–634, 1977. 62. Slavin S, Nagler A, Naparstek E, et al: Nonmyeloablative stem cell transplantation and
31. Evans WE, Crom WR, Abromowitch M, et al: Clinical pharmacodynamics of high- cell therapy as an alternative to conventional bone marrow transplantation with lethal
dose methotrexate in acute lymphocytic leukemia. Identification of a relation between cytoreduction for the treatment of malignant and nonmalignant hematologic diseases.
concentration and effect. N Engl J Med 314:471–477, 1986. Blood 91:756–763, 1998.
32. Wall SM, Johansen MJ, Molony DA, et al: Effective clearance of methotrexate using 63. Brockman RW, Cheng YC, Schabel FM, Montgomery JA: Metabolism and chemother-
high-flux hemodialysis membranes. Am J Kidney Dis 28:846–854, 1996. apeutic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leuke-
33. Widemann BC, Schwartz S, Jayaprakash N, et al: Efficacy of glucarpidase (carboxypep- mia L1210 and evidence for its phosphorylation by deoxycytidine kinase. Cancer Res
tidase g2) in patients with acute kidney injury after high-dose methotrexate therapy. 40:3610–3615, 1980.
Pharmacotherapy 34:427–439, 2014. 64. Gandhi V, Plunkett W: Cellular and clinical pharmacology of fludarabine. Clin Pharma-
34. Shapiro WR, Allen JC, Horten BC: Chronic methotrexate toxicity to the central ner- cokinet 41:93–103, 2002.
vous system. Clin Bull 10:49–52, 1980. 65. Lichtman SM, Etcubanas E, Budman DR, et al: The pharmacokinetics and pharmaco-
35. Bloomfield CD, Lawrence D, Byrd JC, et al: Frequency of prolonged remission duration dynamics of fludarabine phosphate in patients with renal impairment: A prospective
after high-dose cytarabine intensification in acute myeloid leukemia varies by cytoge- dose adjustment study. Cancer Invest 20:904–913, 2002.
netic subtype. Cancer Res 58:4173–4179, 1998. 66. Martell RE, Peterson BL, Cohen HJ, et al: Analysis of age, estimated creatinine clear-
36. Stam RW, den Boer ML, Meijerink JP, et al: Differential mRNA expression of Ara-C-me- ance and pretreatment hematologic parameters as predictors of fludarabine toxicity in
tabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute patients treated for chronic lymphocytic leukemia: A CALGB (9011) coordinated inter-
lymphoblastic leukemia. Blood 101:1270–1276, 2003. group study. Cancer Chemother Pharmacol 50:37–45, 2002.
37. Neubauer A, Maharry K, Mrózek K, et al: Patients with acute myeloid leukemia and 67. Cheson BD, Frame JN, Vena D, et al: Tumor lysis syndrome: An uncommon com-
RAS mutations benefit most from postremission high-dose cytarabine: A Cancer and plication of fludarabine therapy of chronic lymphocytic leukemia. J Clin Oncol 16:
Leukemia Group B study. J Clin Oncol 26:4603–4609, 2008. 2313–2320, 1998.
38. Lamba JK, Crews K, Pounds S, et al: Pharmacogenetics of deoxycytidine kinase: Iden- 68. Cheson BD: Infectious and immunosuppressive complications of purine analog ther-
tification and characterization of novel genetic variants. J Pharmacol Exp Ther 323: apy. J Clin Oncol 13:2431–2448, 1995.
935–945, 2007. 69. Helman DL Jr, Byrd JC, Ales NC, Shorr AF: Fludarabine-related pulmonary toxicity: A
39. Kufe DW, Munroe D, Herrick D, et al: Effects of 1-beta-D-arabinofuranosylcytosine distinct clinical entity in chronic lymphoproliferative syndromes. Chest 122:785–790,
incorporation on eukaryotic DNA template function. Mol Pharmacol 26:128–134, 1984. 2002.
40. Owens JK, Shewach DS, Ullman B, Mitchell BS: Resistance to 1-beta-D-arabinofura- 70. Tam CS, O’Brien S, Wierda W, et al: Long-term results of the fludarabine, cyclophos-
nosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycyti- phamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia.
dine kinase gene. Cancer Res 52:2389–2393, 1992. Blood 112:975–980, 2008.
Kaushansky_chapter 22_p0313-0352.indd 347 9/18/15 10:26 PM

