Page 501 - Williams Hematology ( PDFDrive )
P. 501

476            Part VI:  The Erythrocyte                                                                                                                      Chapter 31:  Structure and Composition of the Erythrocyte            477




                 39.  Buchanan GR, Holtkamp CA, Horton JA: Formation and disappearance of pocked ery-    75.  Farquhar JW: Human erythrocytes phosphoglycerides. I. Quantification of plasmalo-
                  throcytes: Studies in human subjects and laboratory animals. Am J Hematol 25:243,   gens, fatty acids and fatty aldehydes. Biochim Biophys Acta 60:80, 1962.
                  1987.                                                 76.  Kirk E: The concentration of lecithin, cephalin, ether-insoluble phosphatide, and cere-
                 40.  Kass L: Origin and composition of Cabot rings in pernicious anemia. Am J Clin Pathol   brosides in plasma and red blood cells of normal adults. J Biol Chem 123:637, 1938.
                  64:53, 1975.                                          77.  Phillips GB, Roome NS: Quantitative chromatographic analysis of the phospholipids of
                 41.  Kass L, Gray RH: Ultrastructural visualization of Cabot rings in pernicious anemia.   abnormal human red blood cells. Proc Soc Exp Biol Med 109:360, 1962.
                  Experientia 32:507, 1976.                             78.  Westerman MP, Zhang Y, McConnell JP, et al: Ascorbate levels in red blood cells and
                 42.  Jensen WN, Moreno GD, Bessis MC: An electron microscopic description of basophilic   urine in patients with sickle cell anemia. Am J Hematol 65:174, 2000.
                  stippling in red cells. Blood 25:933, 1965.           79.  Luecke R, Pearson PB: The microbiological determination of free choline in plasma and
                 43.  Heinz R: Uber Blutdegeneration und Regeneration. Beitr Pathol 29:299, 1901.  urine. J Biol Chem 153:259, 1944.
                 44.  Chinprasertsuk S, Piankijagum A, Wasi P: In vivo induction of intraerythrocytic inclu-    80.  Beerstecher E, Spangler S, Granick S, et al: Blood vitamins, hormones, enzymes. Blood
                  sion bodies in hemoglobin H disease: An electron microscopic study. Birth Defects Orig   coenzymes: Vertebrates, in Blood and Other Body Fluids, edited by PL Altman, DS Ditt-
                  Artic Ser 23:317, 1987.                                mer, p 108. Federation of American Societies for Experimental Biology, Washington,
                 45.  Sansone G, Sciarratta GV, Ivaldi G, Chiappara G: Hb H-like inclusions in red cells of   DC, 1961.
                  patients with unstable haemoglobin. Haematologica 72:481, 1987.    81.  Kaplan NO, Lipmann F: The assay of distribution of coenzyme A. J Biol Chem 174:37,
                 46.  Wickramasinghe SN, Hughes M, Higgs DR et al: Ultrastructure of red cells containing   1948.
                  haemoglobin H inclusions induced by redox dyes. Clin Lab Haematol 3:51, 1981.    82.  Klein JR, Perlzweig WA, Handler P: Determination of nicotinic acid in blood cells and
                 47.  Bessis MC, Breton-Gorius J: Iron particles in normal erythroblasts and normal and   plasma. J Biol Chem 145:27, 1942.
                  pathological erythrocytes. J Biophys Biochem Cytol 3:503, 1957.    83.  Pearson PB: The pantothenic acid content of the blood of mammalia.  J Biol Chem
                 48.  Evans J, Gratzer W, Mohandas N, et al: Fluctuations of the red cell membrane: Relation   140:423, 1941.
                  to mechanical properties and lack of ATP-dependence. Biophys J 94: 4134, 2008.    84.  Masse PG, Mahuren JD, Tranchant C, Dosy J: B-6, vitamers and 4-pyridoxic acid in
                 49.  Mohandas N, Gallagher PG: Red cells: Past, present and future. Blood 112:393, 2008.  the plasma, erythrocytes, and urine of postmenopausal women. Am J Clin Nutr 80:946,
                 50.  Discher D, Mohandas N, Evans EA: Molecular maps of red cell deformation: Hidden   2004.
                  elasticity and in situ connectivity. Science 266:1032, 1994.    85.  Burch HB, Bessey OA, Lowry OH: Fluorometric measurements of riboflavin and its
                 51.  Liu SC, Derick LH, Palek J: Visualization of the hexagonal lattice in the erythrocyte   natural derivatives in small quantities of blood serum and cells. J Biol Chem 175:457,
                  membrane skeleton. J Cell Biol 104:527, 1987.          1948.
                 52.  Mohandas N, Clark MR, Jacobs MS, Shohet SB: Analysis of factors regulating erythro-    86.  Beutler E: Glutathione reductase: Stimulation in normal subjects by riboflavin supple-
                  cyte deformability. J Clin Invest 66:563, 1980.        mentation. Science 165:613, 1969.
                53.  Mohandas N, Chasis JA, Shohet SB: The influence of membrane skeleton on red cell     87.  Burch HB, Bessey OA, Love RH, Lowry OH: The determination of thiamine and thi-
                  deformability, membrane material properties and shape. Semin Hematol 20:225,   amine phosphates in small quantities of blood and blood cells. J Biol Chem 198:477,
                  1983.                                                  1952.
                 54.  Chasis JA, Mohandas N: Erythrocyte membrane deformability and stability. Two dis-    88.  Beutler E: Red Cell Metabolism: A Manual of Biochemical Methods. Grune & Stratton,
                  tinct membrane properties which are independently regulated by skeletal protein asso-  New York, 1984.
                  ciations. J Cell Biol 103:343, 1986.                  89.  Bishop C, Rankine D, Talbott JH: The nucleotides in normal human blood. J Biol Chem
                 55.  Mohandas N, Chasis JA: Red cell deformability, membrane material properties and   234:1233, 1959.
                  shape: Regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin     90.  Mandel P, Chambon P, Karon H, et al: Nucleotides libres des globules rouges et des
                  Hematol 30:171, 1993.                                  reticulocytes. Folia Haematol Int Mag Klin Morphol Blutforsch 78:525, 1962.
                 56.  Safeukui I, Buffet P, Delpaine G, et al: Quantitative assessment of sensing and seques-    91.  Bartlett GR: Human red cell glycolytic intermediates. J Biol Chem 234:449, 1959.
                  tration of spherocytic erythrocytes by human spleen: Implications for understanding     92.  Yoshikawa H, Nakano M, Miyamoto K, Tatibana M: Phosphorus metabolism in human
                  clinical variability of membrane disorders. Blood 120:424, 2012.  erythrocyte. II. Separation of acid-soluble phosphorus compounds incorporating p32
                 57.  Clark MR, Mohandas N, Caggiano V, Shohet SB: Effects of abnormal cation transport   by column chromatography with ion exchange resin. J Biochem 47:635, 1960.
                  on deformability of desiccytes. J Supramol Struct 8:521, 1978.    93.  Beutler E, Mathai CK: A comparison of normal red cell ATP levels as measured by the
                 58.  Evans E, Mohandas N, Leung A: Static and dynamic rigidities of normal and sickle   firefly system and the hexokinase system. Blood 30:311, 1967.
                  erythrocytes: Major influence of cell hemoglobin concentration. J Clin Invest 73:477,     94.  Minakami  S,  Suzuki  C,  Saito  T,  Yoshikawa  H:  Studies  on  erythrocyte  glycolysis.  I.
                  1984.                                                  Determination of the glycolytic intermediates in human erythrocytes.  J Biochem
                 59.  Pantaleo A, Giribaldi G, Mannu F, et al: Naturally occurring anti-band 3 antibodies   58:543, 1965.
                  and red cell removal under physiological and pathological conditions. Autoimmun Rev     95.  Patterson WD, Hardman JG, Sutherland EW: A comparison of cyclic nucleotide levels
                  7:457, 2008.                                           in plasma and cells of rat and human blood. Endocrinology 95:325, 1974.
                 60.  Arashiki N, Kimata N, Manno S, et al: Membrane peroxidation and methemoglobin     96.  Canepa L, Ferraris AM, Miglino M, Gaetani GF: Bound and unbound pyridine dinu-
                  formation are both necessary for band 3 clustering: Mechanistic insights into erythro-  cleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
                  cyte senescence. Biochemistry 52:5760, 2013.           Biochim Biophys Acta 1074:101, 1991.
                 61.  Cooper RA: Loss of membrane components in pathogenesis of antibody-induced     97.  Micheli V, Simmonds HA, Bari M, Pompucci G: HPLC determination of oxidized and
                  spherocytosis. J Clin Invest 51:16, 1972.              reduced pyridine coenzymes in human erythrocytes. Clin Chim Acta 220:1, 1993.
                 62.  Lock SP, Smith RS, Hardisty RM: Stomatocytosis: A hereditary red cell anomaly associ-    98.  Lagendijk J, Ubbink JB, Vermaak WJH: Quantification of erythrocyte S-adenosyl-l-
                  ated with haemolytic anaemia. Br J Haematol 7:303, 1961.  methionine levels and its application in enzyme studies. J Chromatogr B Biomed Appl
                 63.  Delaunay J, Stewart G, Iolascon A: Hereditary dehydrated and overhydrated stomatoc-  576:95, 1992.
                  ytosis: Recent advances. Curr Opin Hematol 6:110, 1999.    99.  Overgard-Hansen K, Jorgensen S: Determination and concentration of adenine nucle-
                 64.  Delaunay J: The molecular basis of hereditary red cell membrane disorders. Blood Rev   otides in human blood. Scand J Clin Lab Invest 12:10, 1960.
                  21:1, 2007.                                           100. Mills GC: Uridine diphosphate glucose and uridine diphosphate N-acetylglucosamine
                 65.  De Franceschi L, Bosman GJ, Mohandas N: Abnormal red cell features associated with   in erythrocytes. Tex Rep Biol Med 18:446, 1960.
                  hereditary  neurodegenerative  disorders:  The  neuroacanthocytosis  syndromes.  Curr     101. Liang HR, Takagaki T, Foltz RL, Bennett P: Quantitative determination of endogenous
                  Opin Hematol 21:201, 2014.                             sorbitol and fructose in human erythrocytes by atmospheric-pressure chemical ion-
                 66.  Cooper RA, Jandl JH: Bile salts and cholesterol in the pathogenesis of target cells in   ization LC tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci
                  obstructive jaundice. J Clin Invest 47:809, 1968.      824:36, 2005.
                 67.  Padilla F, Bromberg PA, Jensen WN: Sickle–unsickle cycle—Cause of cell fragmenta-    102. Lionetti FJ, McLellan WL, Fortier NL, Foster JM: Phosphate esters produced from
                  tion leading to permanently deformed cells. Blood 41:653, 1973.  inosine in human erythrocyte ghosts. Arch Biochem 94:7, 1961.
                 68.  Horiuchi K, Ballas SK, Asakura T: The effect of deoxygenation rate on the formation of     103. Kawaguchi M, Fujii T, Kamiya Y, et al: Effects of fructose ingestion on sorbitol and
                  irreversibly sickled cells. Blood 71:46, 1988.         fructose 3-phosphate contents of erythrocytes from healthy men. Acta Diabetol 33:100,
                 69.  Bertles JF, Milner PF: Irreversibly sickled erythrocytes: A consequence of the hetero-  1996.
                  geneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest 47:1731,     104. Petersen A, Szwergold BS, Kappler F, et al: Identification of sorbitol 3-phosphate
                  1968.                                                  and fructose 3-phosphate in normal and diabetic human erythrocytes. J Biol Chem
                 70.  Bull BS, Kuhn IN: Production of schistocytes by fibrin strands (a scanning electron   265:17424, 1990.
                  microscope study). Blood 35:104, 1970.                105. Colomer D, Pujades A, Carballo E, Vives Corrons JL: Erythrocyte fructose 2,6-bisphos-
                 71.  Ponder E: Hemolysis and Related Phenomena. Grune & Stratton, New York, 1948.  phate content in congenital hemolytic anemias. Hemoglobin 15:517, 1991.
                 72.  Behrendt H: Chemistry of Erythrocytes. Charles C Thomas, Springfield, IL, 1957.    106. Deichmann WB, Dierker M: The spectrophotometric estimation of hexuronates
                 73.  Tyan YC, Jong SB, Liao JD, et al: Proteomic profiling of erythrocyte proteins by prote-  (expressed as glucuronic acid) in plasma or serum. J Biol Chem 163:753, 1946.
                  olytic digestion chip and identification using two-dimensional electrospray ionization    107  Jung CY: Carrier-mediated glucose transport across human red cell membranes, in The
                  tandem mass spectrometry. J Proteome Res 4:748, 2005.  Red Blood Cell, edited by DM Surgenor, p 705. Academic Press, New York, 1975.
                 74.  Pasini EM, Kirkegaard M, Mortensen P, et al: In-depth analysis of the membrane and     108. Lacko L, Wittke B, Geck P: The temperature dependence of the exchange transport of
                  cytosolic proteome of red blood cells. Blood 108:791, 2006.  glucose in human erythrocytes. J Cell Physiol 82:213, 1973.







          Kaushansky_chapter 31_p0459-0478.indd   476                                                                   9/18/15   10:59 PM
   496   497   498   499   500   501   502   503   504   505   506