Page 526 - Williams Hematology ( PDFDrive )
P. 526

500  Part VI:  The Erythrocyte                                            Chapter 33:  Erythrocyte Turnover           501




                    47.  Ferrant A, Cauwe F, Michaux JL, et al: Assessment of the sites of red cell destruction     78.  Hanayama R, Tanaka M, Miwa K, et al: Expression of developmental endothelial locus-1
                     using quantitative measurements of splenic and hepatic red cell destruction.  Br J     in a subset of macrophages for engulfment of apoptotic cells. J Immunol 172(6):3876,
                     Haematol 50(4):591, 1982.                             2004.
                    48.  Borun ER, Figueroa WG, Perry SM: The distribution of Fe59 tagged human erythro-    79.  Wang RH, Phillips G Jr, Medof ME, et al: Activation of the alternative complement
                     cytes in centrifuged specimens as a function of cell age. J Clin Invest 36(5):676, 1957.  pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythro-
                    49.  Luthra MG, Friedman JM, Sears DA: Studies of density fractions of normal human   cytes from sickle cell disease patients. J Clin Invest 92(3):1326, 1993.
                     erythrocytes labeled with iron-59 in vivo. J Lab Clin Med 94(6):879, 1979.    80.  Fens MH, Storm G, Pelgrim RC, et al: Erythrophagocytosis by angiogenic endothelial
                    50.  Linderkamp  O,  Friederichs  E,  Boehler  T,  et  al:  Age  dependency  of  red  blood  cell   cells is enhanced by loss of erythrocyte deformability. Exp Hematol 38(4):282, 2010.
                     deformability and density: Studies in transient erythroblastopenia of childhood. Br J     81.  Lang F, Gulbins E, Lerche H, et al: Eryptosis, a window to systemic disease. Cell Physiol
                     Haematol 83(1):125, 1993.                             Biochem 22(5–6):373, 2008.
                    51.  Dale GL, Norenberg SL: Density fractionation of erythrocytes by Percoll/Hypaque     82.  Franco RS, Puchulu-Campanella ME, Barber LA, et al: Changes in the properties of
                     results in only a slight enrichment for aged cells. Biochim Biophys Acta 1036(3):183,   normal human red blood cells during in vivo aging. Am J Hematol 88(1):44, 2013.
                     1990.                                                83.  Khandelwal S, Saxena RK: Age-dependent increase in green autofluorescence of blood
                    52.  Bosch FH, Werre JM, Roerdinkholder-Stoelwinder B, et al: Characteristics of red blood   erythrocytes. J Biosci 32(6):1139, 2007.
                     cell populations fractionated with a combination of counterflow centrifugation and     84.  Kerfoot SM, McRae K, Lam F, et al: A novel mechanism of erythrocyte capture from
                     Percoll separation. Blood 79(1):254, 1992.            circulation in humans. Exp Hematol 36(2):111, 2008.
                    53.  Ganzoni AM, Oakes R, Hillman RS: Red cell aging in vivo. J Clin Invest 50(7):1373,     85.  Sandoval H, Thiagarajan P, Dasgupta SK, et al: Essential role for nix in autophagic mat-
                     1971.                                                 uration of erythroid cells. Nature 454(7201):232, 2008.
                    54.  Suzuki T, Dale GL: Senescent erythrocytes: Isolation of in vivo aged cells and their     86.  Fei P, Wang W, Kim SH, et al: Bnip3l is induced by p53 under hypoxia, and its knock-
                     biochemical characteristics. Proc Natl Acad Sci U S A 85(5):1647, 1988.  down promotes tumor growth. Cancer Cell 6(6):597, 2004.
                    55.  Haram S, Carriero D, Seaman C, et al: The mechanism of decline of age-dependent     87.  Song J YD, Thiagarajan P. Prchal JT: Molecular basis of neocytolysis, in 54th Annual
                     enzymes in the red blood cell. Enzyme 45(1–2):47, 1991.  Meeting American Society of Hematology, p 2093. ASH Annual Meeting Abstracts,
                    56.  Zimran A, Forman L, Suzuki T, et al: In vivo aging of red cell enzymes: Study of bioti-  Atlanta, GA, 2012.
                     nylated red blood cells in rabbits. Am J Hematol 33(4):249, 1990.    88.  Javier MC, Krauss A, Nesin M: Corrected end-tidal carbon monoxide closely correlates
                    57.  Beutler E, Hartman G: Age-related red cell enzymes in children with transient ery-  with the corrected reticulocyte count in Coombs test-positive term neonates. Pediatrics
                     throblastopenia of childhood and with hemolytic anemia. Pediatr Res 19(1):44, 1985.  112(6 Pt 1):1333, 2003.
                    58.  Beutler E: The relationship of red cell enzymes to red cell life-span. Blood Cells 14(1):69,     89.  Christensen RD, Lambert DK, Henry E, et al: Unexplained extreme hyperbilirubinemia
                     1988.                                                 among neonates in a multihospital healthcare system. Blood Cells Mol Dis 50(2):105,
                    59.  Dale GL, Norenberg SL: Time-dependent loss of adenosine 5′-monophosphate deam-  2013.
                     inase activity may explain elevated adenosine 5′-triphosphate levels in senescent ery-    90.  Rigal CS: The place of instruments in the scientific work of Marcel Bessis (1917–1994):
                     throcytes. Blood 74(6):2157, 1989.                    The electron microscope and the ektacytometer. Hematol Cell Ther 42(4):250, 2000.
                    60.  Paglia DE, Valentine WN, Nakatani M, et al: Amp deaminase as a cell-age marker in     91.  Shin S, Hou JX, Suh JS, et al: Validation and application of a microfluidic ektacytom-
                     transient erythroblastopenia of childhood and its role in the adenylate economy of ery-  eter (rheoscan-d) in measuring erythrocyte deformability. Clin Hemorheol Microcirc
                     throcytes. Blood 74(6):2161, 1989.                    37(4):319, 2007.
                    61.  Dale GL, Norenberg SL, Suzuki T, et al: Altered adenine nucleotide metabolism in     92.  LoBuglio AF, Cotran RS, Jandl JH: Red cells coated with immunoglobulin g: Binding
                     senescent  erythrocytes  from  the  rabbit.  Prog Clin Biol Res  319:259;  discussion 270,   and sphering by mononuclear cells in man. Science 158(3808):1582, 1967.
                     1989.                                                93.  Jandl JH, Tomlinson AS: The destruction of red cells by antibodies in man. II. Pyro-
                    62.  Clark MR CL, Jensen RH: Density distribution of aging, transfused human red cells.   genic, leukocytic and dermal responses to immune hemolysis. J Clin Invest 37(8):1202,
                     Blood 74(Suppl 1):217a, 1989.                         1958.
                    63.  Waugh RE, Narla M, Jackson CW, et al: Rheologic properties of senescent erythrocytes:     94.  Lutz HU SP, Stammler P, Kock D, Taylor RP: Opsonic potential of c3b-anti-band 3
                     Loss of surface area and volume with red blood cell age. Blood 79(5):1351, 1992.  complexes when generated on senescent and oxidatively stressed red cells or in fluid
                    64.  Tissot JD, Rubin O, Canellini G: Analysis and clinical relevance of microparticles from   phase, in Red Blood Cell Aging, edited by M Magnani. Plenum Press, New York, 1991.
                     red blood cells. Curr Opin Hematol 17(6):571, 2010.    95.  Beppu M, Mizukami A, Nagoya M, et al: Binding of anti-band 3 autoantibody to oxida-
                    65.  Willekens FL, Werre JM, Groenen-Dopp YA, et al: Erythrocyte vesiculation: A self-   tively damaged erythrocytes. Formation of senescent antigen on erythrocyte surface by
                     protective mechanism? Br J Haematol 141(4):549, 2008.  an oxidative mechanism. J Biol Chem 265(6):3226, 1990.
                    66.  Jank H, Salzer U: Vesicles generated during storage of red blood cells enhance the     96.  Nielsen MJ, Andersen CB, Moestrup SK: Cd163 binding to haptoglobin-hemoglobin
                     generation of radical oxygen species in activated neutrophils. ScientificWorldJournal   complexes involves a dual-point electrostatic receptor-ligand pairing.  J Biol Chem
                     11:173, 2011.                                         288(26):18834, 2013.
                    67.  Arashiki N, Kimata N, Manno S, et al: Membrane peroxidation and methemoglobin     97.  Carter K, Worwood M: Haptoglobin: A review of the major allele frequencies world-
                     formation are both necessary for band 3 clustering: Mechanistic insights into human   wide and their association with diseases. Int J Lab Hematol 29(2):92, 2007.
                     erythrocyte senescence. Biochemistry 52(34):5760, 2013.    98.  Piccard H, Van den Steen PE, Opdenakker G: Hemopexin domains as multifunctional
                    68.  Arese P, Turrini F, Schwarzer E: Band 3/complement-mediated recognition and   liganding modules in matrix metalloproteinases  and other  proteins.  J  Leukoc  Biol
                     removal of normally senescent and pathological human erythrocytes.  Cell Physiol     81(4):870, 2007.
                     Biochem 16(4–6):133, 2005.                           99.  Sears DA: Disposal of plasma heme in normal man and patients with intravascular
                    69.  Dale GL, Daniels RB: Quantitation of immunoglobulin associated with senescent    hemolysis. J Clin Invest 49(1):5, 1970.
                     erythrocytes from the rabbit. Blood. 77(5):1096-9, 1991.         100. Wochner RD, Spilberg I, Iio A, et al: Hemopexin metabolism in sickle-cell disease,
                    70.  Zwaal RF, Comfurius P, Bevers EM: Surface exposure of phosphatidylserine in patho-  porphyrias and control subjects—effects of heme injection. N Engl J Med 290(15):822,
                     logical cells. Cell Mol Life Sci 62(9):971, 2005.     1974.
                    71.  Boas FE, Forman L, Beutler E: Phosphatidylserine exposure and red cell viability in red     101. Hvidberg V, Maniecki MB, Jacobsen C, et al: Identification of the receptor scavenging
                     cell aging and in hemolytic anemia. Proc Natl Acad Sci U S A 95(6):3077, 1998.  hemopexin-heme complexes. Blood 106(7):2572, 2005.
                    72.  Kuypers FA, de Jong K: The role of phosphatidylserine in recognition and removal of     102. Rosen H, Sears DA, Meisenzahl D: Spectral properties of hemospexin-heme. The
                     erythrocytes. Cell Mol Biol (Noisy-le-grand) 50(2):147, 2004.  Schumm test. J Lab Clin Med 74(6):941, 1969.
                    73.  Risso  A,  Turello  M,  Biffoni  F,  et  al:  Red  blood  cell  senescence  and  neocytolysis  in     103. Maines MD: The heme oxygenase system: A regulator of second messenger gases. Annu
                     humans after high altitude acclimatization. Blood Cells Mol Dis 38(2):83, 2007.  Rev Pharmacol Toxicol 37:517, 1997.
                    74.  Rice L, Alfrey CP: The negative regulation of red cell mass by neocytolysis: Physiologic     104. Komuro A, Tobe T, Nakano Y, et al: Cloning and characterization of the cdna encoding
                     and pathophysiologic manifestations. Cell Physiol Biochem 15(6):245, 2005.  human biliverdin-ix alpha reductase. Biochim Biophys Acta 1309(1–2):89, 1996.
                    75.  Khandelwal S, Saxena RK: A role of phosphatidylserine externalization in clearance of     105. Erlinger S, Arias IM, Dhumeaux D: Inherited disorders of bilirubin transport and con-
                     erythrocytes exposed to stress but not in eliminating aging populations of erythrocyte   jugation: New insights into molecular mechanisms and consequences. Gastroenterology
                     in mice. Exp Gerontol 43(8):764, 2008.                146(7):1625, 2014.
                    76.  Dasgupta SK, Abdel-Monem H, Guchhait P, et al: Role of lactadherin in the clearance     106. Elder G, Gray CH, Nicholson DC: Bile pigment fate in gastrointestinal tract. Semin
                     of phosphatidylserine-expressing red blood cells. Transfusion 48(11):2370, 2008.  Hematol 9(1):71, 1972.
                    77.  Ishimoto Y, Ohashi K, Mizuno K, et al: Promotion of the uptake of ps liposomes and apop-
                     totic cells by a product of growth arrest-specific gene, gas6. J Biochem 127(3):411, 2000.














          Kaushansky_chapter 33_p0495-0502.indd   501                                                                   9/17/15   6:11 PM
   521   522   523   524   525   526   527   528   529   530   531