Page 56 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 56

Mathematics Term 1  STPM  Answers

                      –1
                  (c)  h (x) = log x        (d)  k (x) = 10   x    13.  (a)          (b)
                                          –1
                            2
                                                                      y
                          y                   y
                            h                    k –1
                              h –1                 k                                      y
                                                                      3
                                 x                   x
                         0                   0
                                                                                                       x
                                                                                         0
                 10.  (a)                                                          x
                        y = f(x)           y = h(x)                   0  1     3              (2,–1)
                           f(x) = e + 1                                    (2,–1)          x = 1  x = 3
                               x
                                                  h(x) = x – 4
                                                      2
                                                         x
                         2                  0   2               14.  (a)             (b)
                         1                                                                     y
                                      x                                    y
                         0                  –4
                  (b)  (i)  Any horizontal lines y = k cuts the graphs f(x) and                        x
                        h(x) only at one point, f(x) and h(x) are one-to-          x          0
                        one functions, therefore f  and h  exist.              0,                  0,
                                              –1
                                         –1
                                                                                                     1
                                                                                 1
                                                                                –
                                                                                                     a
                                                                               (        ) – 2      (        ) – 2
                                                                                 a
                     (ii)  f  : x ↦ ln (x – 1)
                         –1
                               –1
                        Domain f (x): {x : x . 1}                      x = –a  x = a      x = –a  x = a
                        h  : x ↦  x + 4
                         –1
                               –1
                        Domain h (x): {x : x > –4}               (c)       y
                           2
                  (c)  fh(x) = e x  – 4  + 1
                     Domain f   h: {x : x > 0}
                            °
                     Range f   h: {y : y > 1 + e }
                                       –4
                          °
                  (d)  g(x) = h   f(x) = hf(x)                                     x
                           °
                                                                          0
                 11.  (a)             (b)                              x = –a  x = a
                        y                 y
                                          1                     15.  (a)  a = 3, b = 1
                        1                                            2     2
                                   x                   x           (b)  (x  – 4)(3x  + x + 6) + 5x – 2
                        0  2  4           0     2   4                        1  2  71
                       –1                                        (c)  f(x) = 31 x +    2  +
                                         –1                                  6   12
                                                                               1
                                                                                 2

                  (c)                 (d)                           (i)  Since  1 x +  2   .  0 for  ∀x  ∈  R, therefore f(x) is
                      y                                                        6
                                           y                           always positive for all real values of x.
                                                                                                    1
                     2                                              (ii)  Minimum value of f(x) =   71    when x = –
                                          1                                              12         6
                     1
                                                        x        (d)  {x : x , –2, x . 2, x ∈ R}
                                          0      2    4
                                   x     –1
                                                                                        2
                     0     2     4                              16.  a = 7, b = 1; f(x) = (x – 1)(x + 1) (3x + 4);
                                                                   4
                  (e)                                            1 –   , –12  < (–1, 1)
                           y                                       3
                                                                          y                   y
                                                                                             4
                          1
                                                                                  x
                                                                       4  –1  0  1                 y = |f(x)|
                                   x                               – –
                                                                      3
                      –2  0     2                                                                    x
                                                                                           4  –1  0  1
                         –1                                                  y = f(x)  – –
                                                                                          3
                                                                        –4
                 12.  (a)  (i)  1     (ii)  1
                  (c)   2  < y < 2         (d)  –1, 1           17.  (a)         y = g(x)
                     3                                                                    (1, 2)
                  (e)
                           y                                                                  y = 2 – (1 – x) 2
                                                                                  1
                                                                               1 __
                                                                             In
                                                                               2
                           2                                                      0           1+ 2     x
                                                                    y = 2e – 1    –1
                                                                        x
                                   x
                        – 1  0  1
                                                                                                      275
       Answers STPM Math T S1.indd   275                                                               3/28/18   4:25 PM
   51   52   53   54   55   56   57   58   59   60   61