Page 8 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 8

Mathematics Term 1  STPM  Chapter 2 Sequences and Series

                   Example 3


                Determine if each of the following sequences is convergent or divergent.
                (a)  3, 3, 3, …, 3, …
                        1
                                1
                                             1 2
                (b)  1, –   ,   1  , –   , .... , (–1) n – 1 1  , …

                        2  3    4             n
                         2
                            3
                (c)  1, r, r  , r  , …, r  n – 1 , … if
                    (i)  |r| , 1,                                    (ii)  |r|  1.
                Solution:           (a)          u = 3

                                            lim   u   =   lim   3 = 3.
                                           n → ∞  n  n → ∞                                                  2
                                         The sequence is convergent.
                                                         1 2
                                    (b)       u   = (–1) n – 1  1
                                               n
                                                          n
                                          lim   u   =   lim  5 (–1) n – 1  1
                                                              1 26
                                         n → ∞  n  n → ∞       n
                                                              1
                                                 = (–1) n – 1  lim  1 2
                                                         n → ∞   n
                                                 = (–1) n – 1  · 0
                                                 = 0
                                         The sequence is convergent.
                                    (c)            u = r  n – 1
                                                    n
                                               lim   u  =   lim  (r  n – 1 )
                                              n → ∞  n  n → ∞
                                               lim   u  = 0 if |r| , 1
                                              n → ∞  n
                                         and   lim   u  = ∞ if |r|  1.
                                              n → ∞  n
                                         The sequence is convergent if |r| , 1 and divergent if |r|  1.



               Properties of the limits of sequences

                  lim
                                 lim
                                      v  = B, then
                       u  = A and
               If  n → ∞  n     n → ∞  n
               (a)   lim  (u  ± v ) =   lim   u  ±   lim   v  = A ± B.  (b)  lim  (u  · v ) =   lim   u  ·   lim   v  = A · B.
                   n → ∞   n  n   n → ∞  n  n → ∞  n             n → ∞   n  n  n → ∞  n  n → ∞  n
                                 lim
                                     u
                         u
                          n
               (c)   lim    1 2  =   n → ∞  n   =  A  , provided B ≠ 0.
                   n → ∞  v      lim       B
                          n          v
                                n → ∞  n
                   Example 4
                                                                           1
                 If u  and v  are the n  terms of two sequences where u  = 3 and v  =   respectively, find the limit of each
                                  th
                         n
                                                                           n
                                                              n
                    n
                                                                       n
                 sequence when n → ∞. Hence, find   lim    1  3n + 1  2 .
                                               n → ∞   n
                Solution:             lim   u  =   lim   3 = 3.
                                     n → ∞  n  n → ∞
                                                   1
                                      lim   v  =   lim  1 2  = 0

                                     n → ∞  n  n → ∞   n
                                                                                                      95


       02 STPM Math T T1.indd   95                                                                     3/28/18   4:21 PM
   3   4   5   6   7   8   9   10   11   12   13