Page 9 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 9

Mathematics Term 1  STPM  Chapter 2 Sequences and Series

                                   lim    1  3n + 1  2   =   lim  1 3 +   1  2
                                  n → ∞    n      n → ∞    n
                                                                1
                                                           lim
                                                   lim
                                                =  n → ∞  3 +   n → ∞    1 2
                                                                n
                                                = 3 + 0
                                                = 3

             The summation notation ∑

             Suppose we want to find the sum of the series of numbers
         2                                       1 + 2 + 3 +  …  + 100

             One simpler way of representing the sum of a series such as this is by using the Greek alphabet ∑, read as
                                      100
             “sigma”. For example, we write  ∑  r to represent the sum 1 + 2 + 3 +  …  + 100, where the r  term, u , is r, i.e.
                                                                                        th
                                      r = 1                                                     r
                                           100   100
                                           ∑ u  =  ∑  r = 1 + 2 + 3 +  …  + 100.
                                           r = 1  r  r = 1
                             200
             Similarly, we write  ∑  to represent the sum 101 + 102 + 103 +  …  + 200, i.e.
                            r = 101
                                           200
                                           ∑  r = 101 + 102 + 103 +  …  + 200.
                                          r = 101
             Notice that
                              101 + 102 +  …  + 200 = (100 + 1) + (100 + 2) +  …  + (100 + 100)
             So, we can also write
                                                  200   100
                                                  ∑  r =  ∑ (100 + r).
                                                 r = 101  r = 1
             In general, if u  is the r  term of a series, then
                                th
                         r
                                              n
                                              ∑  u  = u  + u  + u  +  …  + u
                                             r = 1  r  1  2  3        n
             Notice that if k is a constant,
                              n
                              ∑  (ku )  = ku  + ku  +  …  + ku n
                                  r
                                        1
                                             2
                             r = 1    = k(u  + u  +  …  + u )
                                                      n
                                             2
                                         1
                                        n
                                      = k ∑ u
                                       r = 1  r
             When u  = u  = u  = … = u  = k, then
                       2
                            3
                   1
                                    n
                                 n
                                ∑  k  = k + k +  …  + k
                                r = 1    = nk
                           n
                           ∑ (u  + v )  = (u  + v ) + (u  + v ) +  …  + (u  + v )
                          r = 1  r  r   1   1     2   2         n   n
                                      = (u + u  +  …  + u ) + (v  + v  +   …  + v )
                                                     n
                                                                       n
                                        1
                                                          1
                                                              2
                                            2
                                       n      n
                                      =  ∑ u  +  ∑ v
                                       r = 1  r  r = 1  r
                           n           n      n
             Similarly,    ∑ (u  – v )  =  ∑  u  –  ∑  v
                          r = 1  r  r  r = 1  r  r = 1  r
              96
       02 STPM Math T T1.indd   96                                                                     3/28/18   4:21 PM
   4   5   6   7   8   9   10   11   12   13   14