Page 9 - Top Class F5 - Mathematics (Chapter 2)
P. 9

Mathematics  Form 5  Chapter 2  Matrices
             4.  Calculate the values of x and y if K = L.  PL 3
               Hitung nilai-nilai x dan y jika K = L.
                  Example
                      15    4 –3     15 4 –3  
                K =  2x + 1  3 10 , L =  7  3 10               If two matrices, A and B, are equal, then
                       8    3y 9         8 12 9                Jika dua matriks, A dan B adalah sama, maka
                                                                             A = B
                 2x + 1 = 7  ,  3y = 12                                       a ij   = b ij
                    2x = 6      y = 4
                     x = 3
                          6 4 – y     6  9           3x        21                             x
                (a)  K =   –5  13  , L =   –x 13                             (c)  K =    7   2  0  ,
                                                                   –1
                                                 (b)  K =  –1 , L =
                                                          2      x + 5y                  3x – 2y  9 4
                      –5  = –x   ,   4 – y = 9
                     x  = 5         y = 4 – 9        3x = 21  ,   2 = x + 5y         L =   7 –3 0 
                                    y = –5             x = 7      2 = 7 + 5y              2 9 4
                                                                5y = –5              x   = –3  ,   3x – 2y = 2
                                                                                     2
                                                                 y = –1                x = –6      3(–6) – 2y = 2
                                                                                                      2y = –20
                                                                                                        y = –10


             2.2    Basic Operation on Matrices                                                          pg. 42 – 66
                                                                                                         Textbook
                    Operasi Asas Matriks

                  SMART    Notes


            1.  Matrices can be added or subtracted if and only if they    6.  Addition and subtraction of matrix A and zero matrix are
               have the  same  order. Each corresponding  element  is   as follows:
               added or  subtracted to  get a single matrix with same      Penambahan  dan penolakan  matriks A  dan matriks sifar  adalah
               order. For example                                  seperti berikut:
               Matriks-matriks boleh ditambah atau ditolak jika dan hanya jika       A + O = A and / dan A – O = A
               matriks-matriks itu mempunyai peringkat yang sama. Unsur yang
               sepadan  ditambah  atau ditolak untuk menghasilkan  satu matriks    7.  To multiply two matrices, the number of columns in the
               tunggal yang sama peringkat. Misalnya,              first matrix must be the same as the number of rows in
                                     =
                          a b   p q   a ± p b ± q            the second matrix.
                              ±
                         c d
                                r s
                                       c ± r d ± s
                                                                   Untuk mendarab dua matriks, bilangan lajur matriks pertama mesti
            2.  Multiplication of matrix by a number, n, is called scalar   sama dengan bilangan baris matriks kedua.
               multiplication.                                                 The order AB
               Pendaraban matriks dengan suatu nombor, n, dikenali sebagai       Peringkat AB
               pendaraban skalar.
                                    =
                              n   a b   na nb                                A       ×      B       =     AB
                                      nc nd
                                c d
            3.  Addition of matrices A, B and C obeys:                        m × n          n × p         m × p
               Penambahan matriks A, B dan C mematuhi:
               (a)  Commutative Law / Hukum Kalis Tukar Tertib                     same
                  A + B = B + A                                                    sama
               (b)  Associative Law / Hukum Kalis Sekutuan       8.  Example of multiplication:
                  (A + B) + C = A + (B + C)                        Contoh pendaraban:
            4.  Addition and subtraction of matrices  A and  B obey          a b p q     ap + br aq + bs
                                                                                
                                                                                       =
               Distributive Law.                                             c d r s   cp + dr cq + ds 
               Penambahan  dan penolakan  matriks  A dan B mematuhi Hukum
               Kalis Agihan.                                     9.  Identity matrix,  I, is a square  matrix that the main
               n(A + B) = nA + nB                                  diagonal elements are 1 and all other elements are 0.
               n(A – B) = nA – nB                                  For example,   1 0  .
            5.  Zero matrix is a matrix with all its elements are zero.        0 1
               For example,                                        Matriks  identiti,  I,  ialah  matriks  segi  empat  sama  dengan
               Matriks sifar ialah  matriks dengan  semua  unsurnya ialah  sifar.   unsur pepenjuru  utama ialah  1 dan semua unsur lain  ialah  0.
                                                                           1 0
               Misalnya,                                           Misalnya,    .
                                 O =   0 0                               0 1
                                     0 0
                                                             27                              © Penerbitan Pelangi Sdn. Bhd.
   4   5   6   7   8   9   10   11   12   13   14