Page 8 - TOP ONE ADDMATHS TG4
P. 8

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

                 2.2    Types of Roots of Quadratic Equations                                                Textbook
                        Jenis-jenis Punca Persamaan Kuadratik
                                                                                                             pg. 45 – 48


                       SMART    Notes

                 1.  The type of roots of a quadratic equation        2.                      Two different real roots
                                                                             2
                  ax  + bx + c = 0 can be determined by finding the         b  – 4ac . 0   Dua punca nyata yang berbeza
                    2
                  value of discriminant, b  – 4ac.
                                       2
                    Jenis-jenis punca bagi suatu persamaan kuadratik        b  – 4ac = 0       Two equal real roots
                                                                             2
                  ax  + bx + c = 0 boleh ditentukan dengan mencari nilai                    Dua punca nyata yang sama
                    2
                  pembezalayan, b  – 4ac.                                                         No real roots
                               2
                                                                            b  – 4ac , 0
                                                                             2
                                                                                                Tiada punca nyata
                 7.  Find the value of discriminant for each of the following quadratic equations. Then, determine the type of
                    roots of the quadratic equation.  PL 3
                    Cari nilai pembezalayan bagi setiap persamaan kuadratik  berikut. Kemudian, tentukan jenis punca bagi persamaan kuadratik tersebut.
                      Example                                        (a)  x  – 8x = –16
                                                                          2
                    (x + 2)  = 12x – 11
                           2
                                                                          x  – 8x + 16 = 0
                                                                           2
                      x  + 4x + 4 = 12x – 11
                      2
                     x  – 8x + 15 = 0                                    Discriminant, b  – 4ac
                      2
                                                                                       2
                                                                         = (–8)  – 4(1)(16)
                                                                               2
                    Discriminant, b  – 4ac                               = 0
                                  2
                          2
                    = (–8)  – 4(1)(15)
                    = 4 . 0
                                                                         ∴ two equal real roots
                    ∴ The equation has two different real roots.
                                                                                   1
                    (b)  x(6x – 5) = 1                               (c)  x  + 2 = –  x
                                                                          2
                                                                                   2
                          6x  – 5x – 1 = 0                                  2(x  + 2) = –x
                           2
                                                                               2
                                                                              2x  + 4 = –x
                                                                                2
                         Discriminant, b  – 4ac                            2x  + x + 4 = 0
                                      2
                                                                             2
                              2
                         = (–5)  – 4(6)(–1)
                                                                                       2
                         = 49 . 0                                        Discriminant, b  – 4ac
                                                                         = (1)  – 4(2)(4)
                                                                              2
                         ∴ two different real roots                      = –31 , 0
                                                                         ∴ no real roots
                 8.  Find the range of values of p if each of the following quadratic equations has two different real roots.  PL 3
                    Cari julat nilai p jika setiap persamaan kuadratik berikut mempunyai dua punca nyata yang berbeza.
                      Example                        (a)  4x  – 5x + 3p – 1 = 0      (b)  x  + px + 4 = 0
                                                           2
                                                                                          2
                    3x  – 12x + p = 0                                                    For two different real roots:
                      2
                                                         For two different real roots:         b  – 4ac . 0
                                                                                                2
                                                                   b  – 4ac  . 0
                                                                    2
                    For two different real roots:            2                            (p)  – 4(1)(4) . 0
                                                                                            2
                            b  – 4ac . 0                   (–5)  – 4(4)(3p – 1) . 0            p  – 16 . 0
                                                                                                2
                             2
                     (–12)  – 4(3)(p) . 0                   25 – 16(3p – 1)  . 0          (p – 4)(p + 4) . 0
                          2
                          144 – 12p . 0                       25 – 48p + 16  . 0
                               –12p . –144                        41 – 48p  . 0          When (p – 4)(p + 4) = 0,
                                12p , 144                             –48p  . –41        p = 4 or p = –4
                                  p , 12                               48p  , 41
                                                                         p  ,   41
                                                                              48                                 p
                                                                                                 –4       4
                                                                                         ∴  p , –4 or p . 4
                                                                 23                              © Penerbitan Pelangi Sdn. Bhd.



       02 TOP 1 + MATH F4.indd   23                                                                             20/12/2019   9:34 AM
   3   4   5   6   7   8   9   10   11   12   13