Page 11 - TOP ONE ADDMATHS TG4
P. 11

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

              12.  Find the range of values of k if the graphs of the following quadratic functions intersect the x-axis at two
                 points.  PL 3
                 Cari julat nilai k jika graf bagi fungsi kuadratik berikut menyilang paksi-x pada dua titik.
                    Example                        (a)  f(x) = kx  + 8x + 6        (b)  f(x) = x  + (k – 3)x + 1
                                                              2
                                                                                              2
                  f(x) = x  – 3x – k
                         2
                                                       has two different real roots    has two different real roots
                                                                 b  – 4ac  . 0                   b  – 4ac  . 0
                                                                  2
                                                                                                  2
                  The graph has                             (8)  – 4(k)(6)  . 0          (k – 3)  – 4(1)(1)  . 0
                                                              2
                                                                                               2
                  two different real roots.                     64 – 24k  . 0              k  – 6k + 9 – 4  . 0
                                                                                            2
                               2
                              b  – 4ac . 0                                                     2
                                                                                              k  – 6k + 5  . 0
                       (–3)  – 4(1)(–k) . 0                         –24k  . –64             (k – 5)(k – 1)  . 0
                          2
                                                                     24k  , 64
                               9 + 4k . 0                                  8
                                   4k . –9                             k  ,   3        When (k – 5)(k – 1) = 0,
                                    k . –   9                                          k = 5 or k = 1
                                          4
                                                                                                               k
                                                                                               1        5
                                                                                       ∴ k , 1 or k . 5
              13.  Find the value of p if the graphs of the following quadratic functions touch the x-axis at one point only.  PL 3
                 Cari nilai p jika graf bagi fungsi kuadratik berikut menyentuh paksi-x pada satu titik sahaja.
                    Example                        (a)  f(x) = x  – 2x + (p – 5)   (b)  f(x) = (p – 3)x  + 4x – 5
                                                             2
                                                                                                    2
                  f(x) = x  – 4x – p
                         2
                                                       has two equal real roots        has two equal real roots
                                                                                                  2
                                                                  2
                  The graph has                                  b  – 4ac  = 0                   b  – 4ac = 0
                                                           2
                                                                                           2
                  two equal real roots.                 (–2)  – 4(1)(p – 5)  = 0         (4)  – 4(p –3)(–5) = 0
                           2
                          b  – 4ac = 0                       4 – 4(p – 5)  = 0             16 + 20(p – 3) = 0
                      2
                   (–4)  – 4(1)(–p) = 0                      4 – 4p + 20  = 0               16 + 20p – 60 = 0
                          16 + 4p = 0                                –4p  = –24                      20p = 44
                              4p = –16                                 p  = 6                          p =   11
                                                                                                           5
                                p = –4
              14.  Find the range of values of h if the following quadratic functions do not intersect the x-axis.  PL 3
                 Cari julat nilai h jika graf bagi fungsi kuadratik berikut tidak menyilang paksi-x.
                    Example                        (a)  f(x) = 8x  + 4x + h        (b)  f(x) = (2h – 3)x  + 2hx – 1
                                                                                                     2
                                                              2
                         2
                  f(x) = x  + 5x – h
                                                       does not have real roots        does not have real roots
                                                              b  – 4ac , 0                         b  – 4ac  , 0
                                                               2
                                                                                                    2
                  The graph does not                       2                               2
                  have real roots.                       (4)  – 4(8)(h) , 0             (2h)  – 4(2h – 3)(–1)  , 0
                                                                                               2
                         b  – 4ac , 0                        16 – 32h , 0                   4h  + 4(2h – 3)  , 0
                          2
                                                                                                2
                   (5)  – 4(1)(–h) , 0                          –32h , –16                    4h  + 8h – 12  , 0
                      2
                                                                                                 2
                         25 + 4h , 0                             32h . 16                       h  + 2h – 3  , 0
                              4h , –25                             h .   1                    (h – 1)(h + 3)  , 0
                                                                        2
                               h , –   25                                              When (h – 1)(h + 3) = 0,
                                      4                                                h = 1 or h = –3
                                                                                                               h
                                                                                              –3        1

                                                                                       ∴  –3 , h , 1





             © Penerbitan Pelangi Sdn. Bhd.                    26





       02 TOP 1 + MATH F4.indd   26                                                                             20/12/2019   9:34 AM
   6   7   8   9   10   11   12   13   14   15   16