Page 13 - TOP ONE ADDMATHS TG4
P. 13
Additional Mathematics Form 4 Chapter 2 Quadratic Functions
16. Solve the following problems. PL 4
Selesaikan masalah-masalah berikut.
Example (a) The diagram shows the graph of quadratic
2
2
Given the quadratic function f(x) = x + 6x – 5 has function f(x) = (x – p) – 8.
a minimum point (h, k), find Rajah di bawah menunjukkan graf bagi fungsi kuadratik
2
Diberi fungsi kuadratik f(x) = x + 6x – 5 mempunyai titik f(x) = (x – p) – 8.
2
minimum (h, k), cari f(x)
(i) the values of h and k,
nilai-nilai h dan k,
(ii) the equation of the axis of symmetry,
persamaan paksi simetri, –3 0 1 x
(iii) the minimum value of f(x).
nilai minimum f(x).
Find / Cari
2
(i) f(x) = x + 6x – 5 (i) the equation of the axis of symmetry,
6
6
persamaan paksi simetri,
2
= x + 6x + 2 – 5 – 2 (ii) the value of p,
2
2
2
= x + 6x + (3) – 5 – (3) 2 nilai p,
2
= (x + 3) – 5 – 9 (iii) the coordinates of the minimum point.
2
= (x + 3) – 14 koordinat bagi titik minimum.
2
∴ h = –3 and k = –14
(i) x = –3 + 1 (ii) p = –1
2
(ii) x = –3 2
= – (iii) (–1, –8)
2
(iii) –14 = –1
2
2
(b) A quadratic function is given by f(x) = –x + 8x (c) The quadratic function f(x) = ax + bx + c has the
+ k , where k is a constant. Find minimum point (–2, –9) and f(–1) = –7. Find
2
Suatu fungsi kuadratik diberi oleh f(x) = –x + 8x + k , Fungsi kuadratik f(x) = ax + bx + c mempunyai titik
2
2
2
dengan keadaan k ialah pemalar. Cari minimum (–2, –9) dan f(–1)= –7. Cari
(i) the equation of the axis of symmetry, (i) the values of a, b and c,
persamaan paksi simetri, nilai-nilai a, b dan c,
(ii) the possible values of k if the quadratic (ii) the equation of the axis of symmetry.
function f(x) has a maximum value of 25. persamaan paksi simetri.
nilai-nilai k yang mungkin jika fungsi kuadratik f(x)
mempunyai nilai maksimum 25. (i) In the form f(x) = a(x – h) + k
2
h = –2, k = –9
2
(i) f(x) = –x + 8x + k 2 ∴ f(x) = a(x + 2) – 9
2
2
2
2
= –[x – 8x – k ] = a(x + 4x + 4) – 9
= ax + 4ax + 4a – 9
2
2
8
2
= – x – 8x + – 8 2 – k – – 2 Comparing: 2
2
2
2
2
= –[x – 8x + (–4) – k – (–4) ] ax + bx + c = ax + 4ax + 4a – 9
2
2
2
∴ b = 4a and c = 4a – 9
2
= –[(x – 4) – k – 16]
2
2
2
= –(x – 4) + k + 16 f(–1) = a(–1) + 4a(–1) + 4a – 9
2
–7 = a – 4a + 4a – 9
Therefore, the equation of axis of symmetry –7 = a – 9
is x = 4. a = 2
(ii) k + 16 = 25 b = 4(2)
2
k = 9 = 8
2
k = ±√9
k = 3 or k = –3 c = 4(2) – 9
= –1
(ii) x = –2
© Penerbitan Pelangi Sdn. Bhd. 28
02 TOP 1 + MATH F4.indd 28 20/12/2019 9:34 AM

