Page 13 - TOP ONE ADDMATHS TG4
P. 13

Additional Mathematics  Form 4  Chapter 2 Quadratic Functions

              16.  Solve the following problems.  PL 4
                 Selesaikan masalah-masalah berikut.

                    Example                                        (a)  The diagram shows the graph of quadratic
                                                                                           2
                                                   2
                  Given the quadratic function f(x) = x  + 6x – 5 has   function f(x) = (x – p)  – 8.
                  a minimum point (h, k), find                         Rajah di bawah menunjukkan graf bagi fungsi kuadratik
                                                                                 2
                  Diberi fungsi kuadratik f(x) = x  + 6x – 5 mempunyai titik   f(x) = (x – p)  – 8.
                                          2
                  minimum (h, k), cari                                                      f(x)
                  (i)  the values of h and k,
                      nilai-nilai h dan k,
                  (ii)  the equation of the axis of symmetry,
                      persamaan paksi simetri,                                      –3      0  1    x
                  (iii) the minimum value of f(x).
                      nilai minimum f(x).
                                                                       Find / Cari
                            2
                  (i)  f(x) = x  + 6x – 5                              (i)  the equation of the axis of symmetry,
                                              6
                                     6
                                                                           persamaan paksi simetri,
                            2
                         = x  + 6x +    2  – 5 –    2                 (ii)  the value of p,
                                              2
                                     2
                            2
                         = x  + 6x + (3)  – 5 – (3) 2                      nilai p,
                                       2
                         = (x + 3)  – 5 – 9                            (iii)  the coordinates of the minimum point.
                                 2
                         = (x + 3)  – 14                                   koordinat bagi titik minimum.
                                 2
                      ∴ h = –3 and k = –14
                                                                       (i)  x =   –3 + 1       (ii)  p = –1
                                                                                  2
                  (ii)  x = –3                                                   2
                                                                             = –               (iii)  (–1, –8)
                                                                                 2
                  (iii) –14                                                  = –1
                                                                                                   2
                                                            2
                  (b)  A quadratic function is given by f(x) = –x  + 8x  (c)  The quadratic function f(x) = ax  + bx + c has the
                      + k , where k is a constant. Find                minimum point (–2, –9) and f(–1) = –7. Find
                         2
                      Suatu fungsi kuadratik diberi oleh f(x) = –x  + 8x + k ,     Fungsi  kuadratik  f(x)  =  ax   +  bx  +  c  mempunyai  titik
                                                       2
                                                                2
                                                                                            2
                      dengan keadaan k ialah pemalar. Cari             minimum (–2, –9) dan f(–1)= –7. Cari
                      (i)  the equation of the axis of symmetry,       (i)  the values of a, b and c,
                           persamaan paksi simetri,                        nilai-nilai a, b dan c,
                      (ii)  the possible values of  k if the quadratic    (ii)  the equation of the axis of symmetry.
                           function f(x) has a maximum value of 25.        persamaan paksi simetri.
                           nilai-nilai k yang mungkin jika fungsi kuadratik f(x)
                           mempunyai nilai maksimum 25.                (i)  In the form f(x) = a(x – h)  + k
                                                                                                   2
                                                                           h = –2, k = –9
                                  2
                      (i)  f(x) = –x  + 8x + k 2                           ∴  f(x) = a(x + 2)  – 9
                                                                                           2
                                                                                       2
                                           2
                                   2
                              = –[x  – 8x – k ]                                   = a(x  + 4x + 4) – 9
                                                                                  = ax  + 4ax + 4a – 9
                                                                                      2
                                 
                                                           2
                                                         8
                                          
                                                      
                                                          
                                   2
                              = – x  – 8x +  –   8  2  – k  –  –  2      Comparing:     2
                                                   2
                                             2
                                                                             2
                                   2
                              = –[x  – 8x + (–4)  – k  – (–4) ]            ax  + bx + c = ax  + 4ax + 4a – 9
                                              2
                                                  2
                                                         2
                                                                           ∴  b = 4a and c = 4a – 9
                                            2
                              = –[(x – 4)  – k  – 16]
                                        2
                                       2
                                           2
                              = –(x – 4)  + k  + 16                           f(–1) = a(–1)  + 4a(–1) + 4a – 9
                                                                                       2
                                                                              –7 = a – 4a + 4a – 9
                           Therefore, the equation of axis of symmetry        –7 = a – 9
                           is x = 4.                                           a = 2
                      (ii)  k  + 16 = 25                                   b = 4(2)
                            2
                               k  = 9                                        = 8
                                2
                                k = ±√9
                                k = 3 or k = –3                            c  = 4(2) – 9
                                                                             = –1
                                                                       (ii)  x = –2
             © Penerbitan Pelangi Sdn. Bhd.                    28
       02 TOP 1 + MATH F4.indd   28                                                                             20/12/2019   9:34 AM
   8   9   10   11   12   13   14   15   16   17   18