Page 59 - Hybrid PBD 2022 Tg 5 - Matematik Tambahan
P. 59

Matematik Tambahan  Tingkatan 5  Bab 2 Pembezaan
                26.  Tentukan nilai hampir bagi setiap yang berikut.     SP 2.4.8     TP5
                  Determine the small change for each of the following.

                                                                                    2                           2
                    Diberi y = x – 2x, cari tokokan kecil dalam y apabila  (a)  Diberi y =   2 , cari nilai hampir bagi   2 .
                              2
                    x berubah daripada 2 kepada 2.01. Seterusnya cari            (2x – 1) 2                  (3.02)
                    nilai hampir bagi y.                                Given that y =  (2x – 1) 2 , find the approximate value
                                                                            2
                           2
                    Given y = x – 2x, find the small change in y when x changes from 2   of  (3.02) 2 .
                    to 2.01. Then, find the approximate value of y.
                                                                        Dengan bandingan:  2x – 1  = 3.02
                    Diberi/Given y = x – 2x                             By comparison                2x  = 4.02
                                   2
                    dy  = 2x – 2                                                                              x  = 2.01
                    dx                                                  Apabila x berubah daripada 2 kepada 2.01,
                    x berubah daripada 2 kepada 2.01                    When x changes from 2 to 2.01, δx = 0.01
                    x changes from 2 to 2.01.                                            2
                             Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                    Jadi/Then δx = 2.01 – 2 = 0.01                      Dari/From  y  =  (2x – 1) 2
                       δy    dy                                                  dy      –8
                         	≈	                       Tip Penting                       =
                       δx    dx                δy   dy                           dx   (2x – 1) 3
                             dy                    ≈                                    dy
                    	  δy	≈	     × δx          δx   dx                  Maka/Hence  δy  ≈    × δx
                             dx                δy  ≈  dy  × δx                          dx
                               ≈	(2x – 2) δx        dx                                ≈	   –8    δx
                               ≈	(2(2) – 2) (0.01)                                      (2x – 1) 3
                                 ≈	0.02                                 Apabila x = 2 dan δx = 0.01
                    Apabila/When x = 2, y = 2 – 2(2)                       δy ≈   –8  (0.01) ≈	-0.00296
                                          2
                                       = 0                                   (2(2) – 1) 3        2       2
                    Maka, nilai hampir bagi y  = y + δy                 Apabila/When x = 2 , y =  (2(2) – 1) 2  =  9
                                           = 0 + (0.02)                                         2
                                           = 0.02                       Maka, nilai hampir bagi  (3.02) 2
                    Hence, the approximate value of y                   Hence, the approximate value of   2
                                                                          2                     (3.02) 2
                                                                        =    + (–0.00296) = 0.219
                                                                          9
                                   3        dy                                               dy
                    (b) Diberi y =     , cari   . Seterusnya, cari nilai  (c)  Diberi y = (5x – 2) , cari    dan nilai hampir bagi
                                                                                        3
                                 (x + 1) 2  dx                                               dx
                                     1                                  3.05 .
                                                                            3
                       hampir bagi       .
                                   (4.01) 2                             Given y = (5x – 2) , find  dy  and the approximate value of 3.05 .
                                                                                    3
                                                                                                                   3
                                3
                       Given y =  (x + 1) 2 , find   dy  . Then, find the approximate value   dx
                                        dx
                            1                                           Diberi/Given y = (5x – 2) 3
                       for     .
                          (4.01) 2                                           dy   = 15(5x – 2) 2
                        Diberi/Given y  =   3                              dx
                                      (x + 1) 2                          5x – 2  = 3.05
                                 dy     –6
                                     =                                      5x  = 5.05
                                 dx   (x + 1) 3                          Apabila x berubah daripada 1 ke 1.01.
                       Jika/If x + 1  = 4.01                                   When x changes from 1 to 1.01
                                x  = 3.01                               Jadi/Then δx = 1.01 – 1 = 0.01
                       x berubah daripada 3 kepada 3.01                  δy    dy
                       x changes from 3 to 3.01                          δx   ≈  dx
                       Jadi/Then δx = 3.01 – 3 = 0.01                          dy
                        δy   ≈  dy                                       δy  ≈	 dx  × δx
                        δx    dx                                                       2
                              dy          –6                                   ≈ 15(5x – 2) δx
                        δy  ≈	   × δx  ≈       δx
                              dx        (x + 1) 3                       Apabila/When
                                          –6
                                     ≈	        (0.01) ≈ –0.00094          x   = 1
                                        (3 + 1) 3                        δy  ≈	15(5(1) – 2)  (0.01)
                                                                                         2
                                              3
                       Apabila/When  x = 3 , y =  16                              ≈	1.35
                       Maka, nilai baharu/ Hence, the new value         Nilai hampir bagi 3.05  = (5 – 2) + 1.35 = 28.35
                                                                                                     3
                                                                                            3
                       y = y + δy =   3   + (-0.00094) = 0.1866         Approximate value for
                                  16
                                                1
                       Nilai hampir bagi   1  2  =   ( 0.1865) = 0.0622
                       Approximate value for  (4.01)  3

              © Penerbitan Pelangi Sdn. Bhd.                      38





         02 Hybrid PBD Mate Tamb Tg5.indd   38                                                                    09/11/2021   9:24 AM
   54   55   56   57   58   59   60   61   62   63   64