Page 110 - Engineering Mathematics Workbook_Final
P. 110

Differential Equations & Partial Differential Equations

                          3
                                2
                   (c) ( D −  D −   4D −    ) 4 y =                      (a) c e +  2x  c e +  3x  e x
                                                 0
                                                                              1
                                                                                      2
                                                                                             2
                          3
                                2
                   (d) ( D −  D −   4D +    ) 4 y =                                            x
                                                 0
                                                                         (b) c e +  1  2x  c e − 3x  +  e
                                                                                      2
                               2
                              d y      dy                                                     2
            156.  Consider         + b    +  cy = 0  where
                              dx 2     dx                                                    e x
                   b & c are real constants. If                          (c) c e +  1  2x  c e +  2  3x  4
                    y =  x e − 5x  is a solution then
                          
                                                                                              e x
                                                                         (d) c e +  2x  c e − 3x  +
                   (a) both b and c are positive                              1       2       4
                   (b) b is positive and c is negative            160.  The particular solution of

                                                                                              x
                                                                                       1
                                                                                 11
                   (c) b is negative but c is positive                    y 111  −  y −  y = − e  is a constant
                                                                         multiple of
                   (d) both b and c are negative
                                                                                −
                                                                                                     x
                                                                                 x
                                 −
                       −
                        x
                                   x
            157.  If e  and  xe  are two independent                     (a)  xe               (b)  xe
                                                                              2 −
                                                                                                    2 x
                                                                                  x
                                  2
                                d y       dy                             (c)  x e              (d)  x e
                   solutions of      +      +  y =  0 then
                                 dx 2     dx
                   the value of  =                               161.  The solution of the differential
                                                                                     2
                                                                                   d y    dy
                                                                                                       
                                                                                                           2x
                                                                         equation       −     −  2y = 3 e ,
                   (a) 1                 (b) -1                                    dx 2   dx
                                                                                      1
                                                                                 0 y
                   (c) -2                (d) 2                            y ( ) 0 = ,  ( ) 0 = −  2 is
            158.  The particular integral of                             (a)  y e −    e +   xe
                                                                                  −
                                                                                        2x
                                                                                    x
                                                                               =
                                                                                                2x
                     2
                    d y  − 2  dy  +  2y =  log2 is
                                                                               =
                                                                                   x
                                                                                                2x
                    dx 2     dx                                          (b)  y e −   e − 2x  +  xe
                       e 2                   log2                                            x e
                                                                                               2 2x
                                                                                        2x
                   (a)                   (b)                             (c)  y e=  − x  +  e +
                        2                      2                                               2
                       log2                  log2                                            x
                                                                                                2x
                   (c)                   (d)                             (d)  y e=  x  − e − 2x  −  e
                         4                     8                                             2
            159.  The general solution of the                     162.  Consider  y −  11  y =  2e  if  ( ) 0y  =  0 ,
                                                                                                x
                   differential equation                                  y 1 ( ) 0 =  then  ( ) 1y
                                                                                  0
                     2
                    d y  − 5 dy  + 6y e  is                                                     =
                                      =
                                         x
                    dx 2    dx


                                                            108
   105   106   107   108   109   110   111   112   113   114   115