Page 105 - Engineering Mathematics Workbook_Final
P. 105

Differential Equations & Partial Differential Equations

                              dy    4 +  y 2                                   log3                 log2
                                                      2
                                               y
            125.  Consider       =         , if  ( ) 1 =                 (a) 2                 (b) 2
                                     +
                              dx    1 x  2                                     log2                  log3
                         y
                   then  ( ) 2 =                                             log3                  log2
                                                                         (c)                   (d)
                   (a) 0                 (b) 5                               log2                  log3


                   (c) 14                (d) 21                   129.  The rate at which a body cools is
                                                                         proportional to the difference
                                     dy    x (2log x +   ) 1             between the temperature of the body
            126.  The solution of       =
                                     dx    sin y +  y cos y              and that of the surrounding air. If a
                                                                                           0
                   is                                                    body in air at 25 C  cools from
                                                                                       0
                                                                             0
                                                                         100 C  to 75 C  in one minute then
                                         +
                   (a)  sin y =  y  x 2  log x c
                                                                         the temperature at the end of three
                                          − +
                       y
                   (b)  cos y =  x 2  log x x c                          minutes is
                                                                                                         0
                                                                                   0
                                                                         (a) 47.22 C           (b) 42.22 C
                                         −
                                             2
                                                 c
                       y
                   (c)  sin y =  x 2  log x x +
                                                                                                         0
                                                                                   0
                                                                         (c) 37.22 C           (d) 39.22 C
                                        − +
                       y
                   (d)  sin y =  x logx x c
                                                                  130.  A radium decomposes at a rate
                                    dy                                   proportional to the amount of radium
                                            −
                                                  2 −
                                                      y
            127.  The solution of       =  e x y  +  x e  is
                                    dx                                   present at that time. If 5% grams of
                                                                         original amount disappears after 50
                                   x 3                                   years then the amount disappears
                             −
                               x
                        y
                   (a) e =  e +       +  c
                                   3                                     after 50 years then the amount will be
                                                                         remain after 1000 years is
                                    x 3
                               −
                                x
                   (b) e −  y  = e +   +  c
                                    3                                    (a) 95.95% of the original amount
                                                                         (b) 95% of the original amount
                                  x 3
                             x
                        y
                   (c) e =  e +      + c
                                  3                                      (c) 90% of the original amount
                                    x 3                                  (d) 90.25% of the original amount
                               −
                                x
                   (d) e −  y  = e +   +  c
                                    3                                                     dy                 2
                                                                                                       y
                                                                  131.  The solution of       = (4x + +     ) 1  is
            128.  The rate of which bacteria multiply is                                  dx
                   proportional to the instantaneous                         1         4x +  4y +  1 
                   number present, if the original                       (a)  tan  − 1                  =  c
                   number doubles in 2 hours then it will                    2             2      
                   be triple in



                                                            103
   100   101   102   103   104   105   106   107   108   109   110