Page 106 - Engineering Mathematics Workbook_Final
P. 106

Differential Equations & Partial Differential Equations

                       1           4x +  4y +  1              134.  The solution which transforms the
                                                   +
                   (b)  tan  − 1                 =  x c
                       2             2                                 non-homogenous differential
                                                                                   dy    2x +  y +  6
                                                                         equation      =              to
                       1                                                           dx    − x + −   3
                                                                                               y
                                                  +
                   (c)  tan  − 1 (4x +  4y +  ) 1 =  x c
                       2                                                 homogenous form is
                       1                                                 (a)  x =  X + 3, y Y +  1
                                                                                          =
                                                c
                   (d)  tan  − 1 (4x + 4y +  ) 1 =
                       2
                                                                                           =
                                                                         (b)  x =  X + 3, y Y −  1
                                    dy
            132.  The solution of       =  Sin (x +  ) y  is             (c)  x =  X − 3, y Y +
                                                                                          =
                                    dx                                                           0
                                                                                          =
                          ( +
                                ) sec x y =
                   (a)  tan x y −     ( +   )   x 2  + c                 (d)  x =  X − 3, y Y +  1
                                                2
                                                                  135.  Which of the following differential
                                ) tan x y =
                   (b) sec x y −      ( +   )   x 2  + c                 equation is linear
                          ( +
                                                2                            dy
                                                                         (a)     +  x y =  2  sin y
                          (
                   (c)  tan x +  y −  (     ) y = +                          dx
                                ) cos x +
                                                x c
                          (
                   (d)  tan x +  y −  (     ) y = +                      (b)   dy  −  x y =  2  sin x
                                ) cot x +
                                               x c
                                                                             dx
            133.  The solution of
                                       y
                           y
                    dy  =     +  tan     is                          (c) (1 y  )  dy  + sin x =
                          
                                                                               +
                                      
                                                                                                  0
                         
                                     
                           x
                                       x
                    dx                                                         dx
                          
                                      
                            y                                          (d)   dy  +  ( y y +  ) x =  x
                                                                                                 2
                   (a) sin           =  xc                             dx
                            x 
                                                                                          dy
                                                                                                    =
                                                                                                         −
                             y                                  136.  The solution of       +  2xy ex  with
                                                                                                          2
                   (b) tan           =  xc                                          dx
                             x                                          y ( ) 0 =  is
                                                                                 1
                                y 
                   (c) Cosec            =  xc                      (a) (1 x e+  )  x 2     (b) (1 x e+  )  −  x 2
                                x 
                                                                                                         )
                             y                                         (c) (1 x e−  )  x 2     (d) (1 x e − x 2
                                                                                                     −
                   (d) Cot           =  xc
                             x 







                                                            104
   101   102   103   104   105   106   107   108   109   110   111