Page 109 - Engineering Mathematics Workbook_Final
P. 109

Differential Equations & Partial Differential Equations

                                                                              y
                   (a) ( x +  2  y 2 )  dy  =  2xy                153.  Let  ( ) x  is solution of
                                  dx                                      y 111  −  y +  4y −  4y = ,  ( ) 0 = ,
                                                                                         1
                                                                                 11
                                                                                                              2
                                                                                                  0 y
                                                                                   0
                   (b) ( x −  2  y 2 ) dy  =  2xy                         y 11 ( ) 0 =  then the value of
                                  dx                                          
                                                                          y     2        =

                   (c) ( y −  2  x 2 ) dy  =  2xy                             
                                  dx                                         1

                                                                         (a)  (4e   /2  −  ) 6
                   (d) ( y −  2  x 2 )  dy  =  xy                            5
                                  dx                                         1

                                                                         (b)  (6e   /2  −  ) 4
            151.  The orthogonal trajectory of family of                     5
                   straight lines  y =  ( k x −  ) 1 , k                    1
                                                     R
                   are given by                                          (c)  (8e  /2  −  ) 2
                                                                             5

                                         2
                              2
                                              2
                   (a) (x −  ) 1 + ( y −  ) 1 =  c                           1
                                                                         (d)  (8e  /2  +  ) 2
                                                                             5
                                   2
                   (b)  x +  2  y =  2  c
                                                                  154.  The set of linearly independent
                                   2
                        2
                                         2
                   (c)  x + ( y −  ) 1 =  c                              solutions of the differential equation
                                                                           4
                                                                                   2
                                                                          d y  −  d y  =
                              2
                                         2
                                    2
                   (d) (x −  ) 1 +  y = c                                 dx 4   dx 2   0 is
            152.  The orthogonal trajectories of family                  (a)  1, , ,e − x 
                                                                                    x
                                                                                x e
                                                )
                   of centroids r =  a +  (1 cos  is
                                                                                    x
                                                                                x e
                                                                         (b)  1, , ,e −  x ,xe −  x 
                   (a) r =  c (1 sin−  )
                                                                                    x
                                                                                x e
                                                                         (c)  1, , ,xe x 
                   (b) r =  c (1 sin+  )
                                                                                    x
                                                                                x e
                                       )
                   (c) r =  c −  (1 cos                                 (d)  1, , ,xe − x 
                                       )
                   (d) r =  c +  (1 cos                          155.  The differential equation whose
                                                                         linearly independent solutions are
                                                                                             −
                                                                                              x
                                                                         cos2x, sin2x and e  is
                                                                                3
                                                                                      2
                                                                         (a) ( D +  D +   4D +    ) 4 y =  0
                                                                                3
                                                                                      2
                                                                                                       0
                                                                         (b) ( D −  D +   4D −    ) 4 y =


                                                            107
   104   105   106   107   108   109   110   111   112   113   114