Page 108 - Engineering Mathematics Workbook_Final
P. 108
Differential Equations & Partial Differential Equations
3 3 (a) ( x − x 2 y 2 ) c
=
e
(a) , = = 1 (b) 1, = =
2 2
e
(b) ( x + x 2 y 2 ) c=
2 2
(c) , = = 1 (d) 1, = =
3 3
=
−
(c) ( x + x 2 y 2 ) c
e
144. The differential equation
−
=
e
( 27x + ky cos ) x dx + (2sin x − 27y 3 ) dy = 0 (d) ( x − x 2 y 2 ) c
2
is exact for k =
148. If the integrating factor of
(a) 2 (b) 3 7 2 3
( x y + 3y ) dx + (3x y − ) x dy =
0
(c) 4 (d) 5
is x y then
145. The integrating factor of (a) 7, = − = 1
)
(Cos sin 2x dx + (cos y − cos 2 ) x dy = 0
2
y
is (b) 1, = = − 7
(a) sec y + 2 sec y tan y (c) = = 0
(b) tan y + 2 sec y tan y (d) = = 1
1 149. The solution of
(c) 2 2
0
sec y + 2 sec y tan y ( y − xy ) dx − ( x + x ) y dy = is
1 x x
(d) (a) ln − = c
tan y + 2 sec y tan y y y
146. Consider the differential equation x x
dy = (3x + 2x )e y x + 1, if ( ) 1y = 1 (b) ln + = c
−
2
dx y y
y
then ( ) 0 = x
=
(c) ln + xy c
−
3
(a) log (b) 0 y
e
x
3
=
(c) 1 (d) log (d) ln − xy c
e
y
147. The solution of the differential
equation 150. The orthogonal trajectory of the
( x + y + 2x ) dx + 2ydy = is family of circles x + 2 y = 2 2cx is
2
2
0
described by the differential equation
106

