Page 108 - Engineering Mathematics Workbook_Final
P. 108

Differential Equations & Partial Differential Equations

                            3                           3                (a)  ( x − x  2  y 2 ) c
                                                                                          =
                                                                             e
                   (a)       , =  =  1   (b)   1, =  =
                            2                           2
                                                                             e
                                                                         (b)  ( x + x  2  y 2 ) c=
                            2                           2
                   (c)       , =  =  1   (d)   1, =  =
                            3                           3
                                                                                           =
                                                                              −
                                                                         (c)  ( x + x  2  y 2 ) c
                                                                             e
            144.  The differential equation
                                                                              −
                                                                                           =
                                                                             e
                   ( 27x + ky cos  ) x dx + (2sin x − 27y 3 ) dy = 0     (d)  ( x − x  2  y 2 ) c
                        2
                    is exact for k =
                                                                  148.  If the integrating factor of
                   (a) 2                 (b) 3                              7  2               3
                                                                         ( x y +  3y ) dx + (3x y −   ) x dy =
                                                                                                             0
                   (c) 4                 (d) 5                                 
                                                                         is  x y  then
            145.  The integrating factor of                              (a)      7,  = −  = 1
                                 )
                   (Cos sin 2x dx +    (cos y −  cos 2  ) x dy = 0
                                            2
                         y
                    is                                                   (b)    1,  =  = − 7

                   (a) sec y +  2  sec y   tan y                        (c)     =  =  0


                   (b) tan y +  2  sec y   tan y                        (d)     =  =  1


                                  1                               149.  The solution of
                   (c)                                                           2              2
                                                                                                         0
                       sec y +  2  sec y   tan y                        ( y −  xy  ) dx − ( x +  x  ) y dy =  is

                                  1                                              x    x
                   (d)                                                   (a) ln         −  =  c
                       tan y +  2  sec y   tan y                                  y     y


            146.  Consider the differential equation                             x    x

                    dy  = (3x +  2x )e  y x  + 1, if  ( ) 1y  = 1        (b) ln             +  =  c
                                       −
                             2
                    dx                                                           y    y
                         y
                   then  ( ) 0 =                                                 x 
                                                                                           =
                                                                         (c) ln             +  xy c
                       −
                            3
                   (a)  log              (b) 0                                   y 
                            e
                                                                                 x 
                                                3
                                                                                           =
                   (c) 1                 (d) log                         (d) ln             −  xy c
                                                e
                                                                                 y 
            147.  The solution of the differential
                   equation                                       150.  The orthogonal trajectory of the
                   ( x +  y +  2x ) dx +  2ydy =  is                     family of circles  x +  2  y =  2  2cx  is
                           2
                      2
                                                 0
                                                                         described by the differential equation


                                                            106
   103   104   105   106   107   108   109   110   111   112   113